本文整理汇总了Python中sklearn.preprocessing.binarize函数的典型用法代码示例。如果您正苦于以下问题:Python binarize函数的具体用法?Python binarize怎么用?Python binarize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了binarize函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: ig
def ig(X, y):
"""
This method calculates the information gain for two random variables I(X, Y).
"""
# binarization: from counts to presence/abscence
binarize(X, threshold=0.0, copy=False)
# una columna por cada clase
Y = LabelBinarizer().fit_transform(y)
if Y.shape[1] == 1: # binary problem case
Y = np.append(1-Y, Y, axis=1)
Y_prob = (np.sum(Y, axis=0, dtype=np.float64) / len(Y)).reshape(-1, 1)
# calculate the class entropy H(Y)
class_entropy = _entropy(Y_prob)
X_y_count = safe_sparse_dot(Y.T, X)
# TODO XXX FIXME ver si estoy calculando bien esta probabilidad
X_y_prob = \
X_y_count / np.sum(X_y_count, axis=0, dtype=np.float64)
# calculate the conditional entropy of the class given the feature H(y|f_i)
cond_entropy = _entropy(X_y_prob) # TODO XXX FIXME ver si estoy calculando bien la entropia condicional
print "class:", class_entropy
print "cond_entropy:", cond_entropy
infogain = class_entropy - cond_entropy
return infogain, None
开发者ID:mac2bua,项目名称:text_feature_selection,代码行数:31,代码来源:feature_scoring.py
示例2: bns
def bns(X, y):
"""
Implements the bi-normal separation scoring.
"""
# binarization: from counts to presence/abscence
binarize(X, threshold=0.0, copy=False)
# one column per class
Y = LabelBinarizer().fit_transform(y)
if Y.shape[1] == 1: # binary problem case
Y = np.append(1-Y, Y, axis=1)
pos = np.sum(Y, axis=0)
neg = Y.shape[0] - pos
tp = safe_sparse_dot(X.T, Y)
fp = np.sum(tp, axis=1).reshape(-1, 1) - tp
tpr = bounded(tp/pos.astype(float))
fpr = bounded(fp/neg.astype(float))
bns = np.abs(_z_score(tpr) - _z_score(fpr))
return bns[:,1], None
开发者ID:mac2bua,项目名称:text_feature_selection,代码行数:25,代码来源:feature_scoring.py
示例3: test_binarize
def test_binarize(self):
iris = datasets.load_iris()
df = pdml.ModelFrame(iris)
result = df.preprocessing.binarize()
expected = pp.binarize(iris.data)
self.assertTrue(isinstance(result, pdml.ModelFrame))
self.assert_numpy_array_almost_equal(result.data.values, expected)
self.assert_index_equal(result.columns, df.data.columns)
result = df.preprocessing.binarize(threshold=5)
expected = pp.binarize(iris.data, threshold=5)
self.assertTrue(isinstance(result, pdml.ModelFrame))
self.assert_numpy_array_almost_equal(result.data.values, expected)
self.assert_index_equal(result.columns, df.data.columns)
s = df['sepal length (cm)']
self.assertTrue(isinstance(s, pdml.ModelSeries))
result = s.preprocessing.binarize()
expected = pp.binarize(iris.data[:, 0])[0]
self.assertTrue(isinstance(result, pdml.ModelSeries))
self.assert_numpy_array_almost_equal(result.values, expected)
self.assertEqual(result.name, 'sepal length (cm)')
result = s.preprocessing.binarize(threshold=6)
expected = pp.binarize(iris.data[:, 0], threshold=6)[0]
self.assertTrue(isinstance(result, pdml.ModelSeries))
self.assert_numpy_array_almost_equal(result.values, expected)
self.assertEqual(result.name, 'sepal length (cm)')
开发者ID:Sandy4321,项目名称:pandas-ml,代码行数:33,代码来源:test_preprocessing.py
示例4: predict
def predict(self, X):
''' Predict class labels. '''
if self.mode == 'average':
return binarize(self.predict_proba(X)[:,[1]], 0.5)
else:
res = binarize(X, 0.5)
return np.apply_along_axis(lambda x: np.bincount(x.astype(int), self.weights).argmax(), axis=1, arr=res)
开发者ID:amitsingh2783,项目名称:kaggle,代码行数:7,代码来源:transform.py
示例5: get_score
def get_score(X, y, clf, scoring = 'accuracy'):
from sklearn.preprocessing import binarize
if scoring == 'accuracy':
from sklearn.metrics import accuracy_score
score = accuracy_score(y, binarize(clf.predict(X), 0.5))
elif scoring =='f1':
from sklearn.metrics import f1_score
score = f1_score(y, binarize(clf.predict(X), 0.5))
else:
score = clf.score(X, y)
return score
开发者ID:jdnc,项目名称:ml-project,代码行数:13,代码来源:classify.py
示例6: do_transformations
def do_transformations(self):
# binarize counts
if self.transform == 'binarize':
print "Binarizing"
self.feature_counts = binarize(self.feature_counts, copy=False)
#self.feature_counts = sparse.csr_matrix(self.feature_counts > 0, dtype=int)
elif self.transform == 'tfidf':
print "Doing tf-idf transform"
#doc_sums = self.feature_counts.sum(axis=1)
#if np.min(doc_sums) == 0:
# doc_sums[doc_sums == 0] = 1.0
#tf = sparse.csr_matrix(self.feature_counts.multiply(1.0/doc_sums))
n_items, n_features = self.feature_counts.shape
tf = normalize(self.feature_counts, norm='l1', axis=1, copy=False)
doc_counts = self.vocab.get_all_doc_counts()
n_docs = doc_counts.max()
# add one to avoid zeros which might screw up the matrix size
idf = sparse.csr_matrix(np.log(float(n_docs+1) / doc_counts), dtype=float)
print tf.shape, idf.shape
self.feature_counts = tf.multiply(idf)
assert self.feature_counts.shape == (n_items, n_features)
elif self.transform == 'normalizel1' or self.transform == 'normalize':
print "Normalizing rows"
self.feature_counts = normalize(self.feature_counts, norm='l1', axis=1, copy=False)
elif self.transform == 'normalizel2':
print "Normalizing rows"
self.feature_counts = normalize(self.feature_counts, norm='l2', axis=1, copy=False)
if self.scale_factor is not None:
self.feature_counts = self.feature_counts * self.scale_factor
开发者ID:dallascard,项目名称:guac,代码行数:34,代码来源:feature_extractor_counts.py
示例7: resc
def resc(patch):
"""
:param patch: [image,mask]
:return: random rescaling of the pair [image,mask]
--- Rescaling reinforces axons size diversity ---
"""
s = random.choice([0.5, 0.75, 1.0, 1.5, 2.0])
data_rescale=[]
for scale in s:
image_rescale = rescale(patch[0], scale)
mask_rescale = rescale(patch[1], scale)
s_r = mask_rescale.shape[0]
q_h, r_h = divmod(256-s_r,2)
if q_h > 0 :
image_rescale = np.pad(image_rescale,(q_h, q_h+r_h), mode = "reflect")
mask_rescale = np.pad(mask_rescale,(q_h, q_h+r_h), mode = "reflect")
else :
patches = extract_patch(image_rescale,mask_rescale, 256)
i = np.random.randint(len(patches), size=1)
image_rescale,mask_rescale = patches[i]
mask_rescale = preprocessing.binarize(np.array(mask_rescale), threshold=0.001)
data_rescale = [image_rescale, mask_rescale]
return data_rescale
开发者ID:vherman3,项目名称:AxonSegmentation,代码行数:30,代码来源:input_data.py
示例8: op_vs_ip
def op_vs_ip(subid, image_types, imagepaths, op_direc, overlays):
img_data_group=[]
img_shape_group=[]
ol_data_group=[]
ol_shape_group=[]
for i, path in enumerate(imagepaths):
axial_slice, cor_slice, sag_slice, img_aspect_axial, img_aspect_cor, img_aspect_sag = pull_midslices(path)
if os.path.isfile(overlays[i]):
axial_slice_ol, cor_slice_ol, sag_slice_ol, img_aspect_axial_ol, img_aspect_cor_ol, img_aspect_sag_ol = pull_midslices(overlays[i])
ol_data_group.append([axial_slice_ol, cor_slice_ol, sag_slice_ol])
ol_shape_group.append([img_aspect_axial_ol, img_aspect_cor_ol, img_aspect_sag_ol])
else:
ol_data_group.append(['null','null','null'])
ol_shape_group.append(['null','null','null'])
## Append to Matrices
img_data_group.append([axial_slice, cor_slice, sag_slice])
img_shape_group.append([img_aspect_axial,img_aspect_cor,img_aspect_sag])
my_cmap=plt.cm.gray
fig, axarr = plt.subplots(ncols=np.shape(img_shape_group)[1], nrows=np.shape(img_shape_group)[0], figsize=(np.shape(img_shape_group)[0]*5,np.shape(img_shape_group)[1]*5))
plt.suptitle(subid+' File Comparison', fontsize=20)
titlearray=['Axial', 'Coronal', 'Saggital']
for x in range(0,np.shape(img_shape_group)[0]):
for y in range(0,np.shape(img_shape_group)[1]):
im = axarr[x, y].imshow(img_data_group[x][y], cmap=my_cmap, aspect=img_shape_group[x][y])
axarr[x, y].set_xlabel('(Right) Radiological Convention (Left)', fontsize=10)
axarr[x, y].set_title(image_types[x]+' '+titlearray[y])
#divider = make_axes_locatable(axarr[x, y])
#cax_ = divider.append_axes("right", size="5%", pad=0.05)
#cbar = plt.colorbar(im, cax=cax_, ticks=MultipleLocator(round(np.max(img_data_group[x][y])/5, 1)))
axarr[x, y].xaxis.set_visible(False)
axarr[x, y].yaxis.set_visible(False)
if os.path.isfile(overlays[x]):
if x == 1:
thresh=0.25
if x == 2:
thresh=0.4
sl=np.array(ol_data_group[x][y]).astype(np.float64)
sl=filters.sobel(sl)
sl=preprocessing.binarize(sl, np.max(sl)*thresh)
sl[sl < 1] = 'Nan'
axarr[x, y].imshow(sl, cmap='autumn', aspect=ol_shape_group[x][y])
#plt.show()
plt.tight_layout()
plt.autoscale()
plt.savefig(op_direc)
开发者ID:DaveOC90,项目名称:Tissue-Segmentation,代码行数:60,代码来源:plot_overlay_imgs.py
示例9: example2
def example2():
"""方法2[推荐]
"""
X = np.array([[1, -1, 2], ## "f"非常重要,为了标准化,矩阵元素必须是浮点类型
[2, 0, 0],
[0, 1, -1]], dtype = "f")
print("binarized X = \n%s\n" % preprocessing.binarize(X, threshold=1.1))
开发者ID:MacHu-GWU,项目名称:six-demon-bag,代码行数:7,代码来源:binarize.py
示例10: elastic_transform
def elastic_transform(image, gt, alpha, sigma, random_state=None):
"""
:param image: image
:param gt: ground truth
:param alpha: deformation coefficient (high alpha -> strong deformation)
:param sigma: std of the gaussian filter. (high sigma -> smooth deformation)
:param random_state:
:return: deformation of the pair [image,mask]
"""
if random_state is None:
random_state = np.random.RandomState(None)
shape = image.shape
d = 4
sub_shape = (shape[0]/d, shape[0]/d)
deformations_x = random_state.rand(*sub_shape) * 2 - 1
deformations_y = random_state.rand(*sub_shape) * 2 - 1
deformations_x = np.repeat(np.repeat(deformations_x, d, axis=1), d, axis = 0)
deformations_y = np.repeat(np.repeat(deformations_y, d, axis=1), d, axis = 0)
dx = gaussian_filter(deformations_x, sigma, mode="constant", cval=0) * alpha
dy = gaussian_filter(deformations_y, sigma, mode="constant", cval=0) * alpha
x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]))
indices = np.reshape(y+dy, (-1, 1)), np.reshape(x+dx, (-1, 1))
elastic_image = map_coordinates(image, indices, order=1).reshape(shape)
elastic_gt = map_coordinates(gt, indices, order=1).reshape(shape)
elastic_gt = preprocessing.binarize(np.array(elastic_gt), threshold=0.5)
return [elastic_image, elastic_gt]
开发者ID:vherman3,项目名称:AxonSegmentation,代码行数:35,代码来源:input_data.py
示例11: test_model
def test_model(LRM, data, TBI=False):
global GAMMA
y = list(data.TBResult.values)
test_recs = list(data.StudyNum.values)
X = data.drop(['StudyNum','TBResult'],axis=1)
probs = LRM.predict_proba(X)[:,1]
"""
Calculate AUC acc using ROC analysis
"""
# Get FPR and TPR for the test set
fpr, tpr, thresh = roc_curve(y,probs)
# Calc AUC acc
auc_acc = auc(fpr,tpr)
pred = map(int,binarize(np.array(probs).reshape(1,-1),threshold = GAMMA)[0])
if not TBI:
ACC,SENS,SPEC = eval_model(pred, y)
return [ACC,SENS,SPEC,auc_acc]
else:
ACC,SENS,SPEC = eval_model(pred, y, probs=probs, test_px=test_recs, TBI=True)
return [ACC,SENS,SPEC]
开发者ID:Rendiere,项目名称:Masters_Round3,代码行数:30,代码来源:vanilla_5AUG.py
示例12: load_data
def load_data(self, features, X_threshold):
""" Load data into c_data """
from neurosynth.analysis.reduce import average_within_regions
# Load Masks by studies matrix
# ADD FEATURE TO FILTER BY FEATURES
masks_by_studies = average_within_regions(self.dataset, self.mask_img, threshold = self.thresh)
study_ids = self.dataset.feature_table.data.index
print "Loading data from neurosynth..."
pb = tools.ProgressBar(len(list(masks_by_studies)), start=True)
self.ids_by_masks = []
self.data_by_masks = []
for mask in masks_by_studies:
m_ids = study_ids[np.where(mask == True)[0]]
self.ids_by_masks.append(m_ids)
self.data_by_masks.append(self.dataset.get_feature_data(ids=m_ids))
pb.next()
self.mask_num = masks_by_studies.shape[0]
self.mask_pairs = list(itertools.permutations(range(0, self.mask_num), 2))
filename = path.join(mkdtemp(), 'c_data.dat')
self.c_data = np.memmap(filename, dtype='object',
mode='w+', shape=(self.mask_num, self.mask_num))
# Load data
for pair in self.mask_pairs:
reg1_ids = self.ids_by_masks[pair[0]]
reg2_ids = self.ids_by_masks[pair[1]]
reg1_set = list(set(reg1_ids) - set(reg2_ids))
reg2_set = list(set(reg2_ids) - set(reg1_ids))
x1 = self.data_by_masks[pair[0]]
x1 = np.array(x1)[np.where(np.in1d(reg1_ids, reg1_set))[0]]
x2 = self.data_by_masks[pair[1]]
x2 = np.array(x2)[np.where(np.in1d(reg2_ids, reg2_set))[0]]
y = np.array([0]*len(reg1_set) + [1]*len(reg2_set))
X = np.vstack((x1, x2))
if X_threshold is not None:
X = binarize(X, X_threshold)
from neurosynth.analysis.classify import regularize
X = regularize(X, method='scale')
self.c_data[pair] = (X, y)
if self.memsave:
self.data_by_masks = []
self.ids_by_masks = []
开发者ID:margulies,项目名称:NS_Classify,代码行数:59,代码来源:multipleclassifier.py
示例13: transform
def transform(self, X):
"""Compute the Jaccard similarity for all pairs of elements in ``X``.
Rows i in ``X`` are assumed to represent pairs, where
``X[i, :n_features]`` and ``X[i, n_features:]`` correspond to their two
individual elements, each representing a set. Calling ``transform``
computes the Jaccard similarity between these sets, i.e. such that
``Xt[i]`` is the Jaccard similarity of ``X[i, :n_features]`` and
``X[i, n_features:]``.
Parameters
----------
:param X: array-like, shape (n_samples, n_features)
Input data.
Returns
-------
:returns: Xt array-like, shape (n_samples, 1)
The transformed data.
"""
n_samples, n_features_all = X.shape
n_features = n_features_all // 2
X = binarize(X)
X1 = X[:, :n_features]
X2 = X[:, n_features:]
sparse = sp.issparse(X)
if sparse and not sp.isspmatrix_csr(X):
X = X.tocsr()
if sparse:
if X.data.sum() == 0:
return np.zeros((n_samples, 1))
numerator = np.asarray(X1.multiply(X2).sum(axis=1)).ravel()
X_sum = X1 + X2
X_sum.data[X_sum.data != 0.] = 1
M = X_sum.sum(axis=1)
A = M.getA()
denominator = A.reshape(-1,)
else:
if len(X[X.nonzero()]) == 0.:
return np.zeros((n_samples, 1))
numerator = (X1 * X2).sum(axis=1)
X_sum = X1 + X2
X_sum[X_sum.nonzero()] = 1
denominator = X_sum.sum(axis=1)
with np.errstate(divide="ignore", invalid="ignore"):
Xt = numerator / denominator
Xt[np.where(denominator == 0)[0]] = 0.
return np.array(Xt).reshape(-1, 1)
开发者ID:jochenklein,项目名称:beard,代码行数:59,代码来源:pairs.py
示例14: eval_model
def eval_model(preds, y_ref, probs = [], test_px = [], TBI = False):
global GAMMA
if len(preds) != len(y_ref):
print "Predicted labels and test labels dont have the same dimensions!"
print "Predicted: ", n_pred, "; Tests: ", n_test
exit()
if not TBI:
CM = confusion_matrix(y_ref, preds)
TP = CM[1,1]
TN = CM[0,0]
FP = CM[0,1]
FN = CM[1,0]
ACC = (TP+TN)/float(TP+TN+FP+FN)
SENS = TP/float(TP+FN)
SPEC = TN/float(TN+FP)
return ACC,SENS,SPEC
else:
i = np.arange(len(test_px))
df = pd.DataFrame({"Recording": pd.Series(test_px,index = i),
"Prediction": pd.Series(preds,index = i),
"Reference": pd.Series(y_ref,index = i),
"Probabilities": pd.Series(probs,index = i)
}).sort_values(by="Recording")
y_test_rec = []
TBI_list = []
for name, group in df.groupby("Recording"):
l = group.Reference.iloc[0]
y_test_rec.append(l)
TB_prob = sum(group.Probabilities.values) / float(len(group.Probabilities))
TBI_list.append(TB_prob)
diagnosis_list = map(int,binarize(np.array(TBI_list).reshape(1,-1),threshold = GAMMA)[0])
CM = confusion_matrix(y_test_rec, diagnosis_list)
TP = CM[1,1]
TN = CM[0,0]
FP = CM[0,1]
FN = CM[1,0]
ACC = (TP+TN)/float(TP+TN+FP+FN)
SENS = TP/float(TP+FN)
SPEC = TN/float(TN+FP)
return ACC, SENS, SPEC
开发者ID:Rendiere,项目名称:Masters_Round3,代码行数:59,代码来源:vanilla_5AUG.py
示例15: predictClass
def predictClass(self, threshold=0.5):
# prediction
# self.pred_y = self.model.predict(self.test_set_X)
if self.is_keras:
self.pred_y_prob = self.model.predict_proba(self.test_set_X)[:, 0]
else:
self.pred_y_prob = self.model.predict_proba(self.test_set_X)[:, 1]
self.pred_y = binarize(self.pred_y_prob.reshape(1, -1), threshold)[0].astype(int)
开发者ID:asalomatov,项目名称:variants,代码行数:8,代码来源:train.py
示例16: prob_maximum_low
def prob_maximum_low(self, x=None, y=None, show=True):
x, y = self.proxy_xy(x, y)
fiter = self.get_fiter()
y_prob = MlFiterExcute.run_prob_cv_estimator(fiter, x, y, n_folds=10)
l_pb = y_prob[y_prob < y_prob.mean()].mean()
y_prob_l = binarize(y_prob.reshape(-1, 1), l_pb)
if show:
self.scores(y_prob_l, y)
return l_pb
开发者ID:alaofeng,项目名称:abu,代码行数:9,代码来源:MlFiter.py
示例17: binarize
def binarize(df):
"""
将数据二值化
:param df: 传入DataFrame
:returns: 标准化后的数据
"""
if not isinstance(df, pd.DataFrame):
raise Exception("df is not DataFrame!")
return preprocessing.binarize(df)
开发者ID:WQ-huziang,项目名称:WQ-Testcode,代码行数:9,代码来源:normalizationGallery.py
示例18: transform
def transform(self, X):
#If the binarize option is set to true, we need now to recompute "f", our binarized word counter
if(self.bina == True):
f_hat = binarize(X, threshold = 0.0)
else :
f_hat = X
f_tilde = f_hat.multiply(self.r)
return f_tilde
开发者ID:ivoPe,项目名称:SkNbsvm,代码行数:9,代码来源:nbsvm1_1.py
示例19: validation
def validation(data, px, y_px):
global GAMMA
# convert px and y_px for broadcasting
px = np.array(px)
y_px = np.array(y_px)
# vanilla LogReg classifier
LRM = LogisticRegression()
skf = StratifiedKFold(y_px, n_folds = N_FOLDS, shuffle = True)
print "Running",N_FOLDS,"Stratified Splits"
probs = [] # Probabilities during validation
preds = [] # Predictions made
y_ref = [] # Labels as they were used in validation
val_recs = [] # List of recordings as they were used in validation
for train_idx, val_idx in skf:
# Separate train and val sets using indexes
X_train, y_train, X_val, y_val, val_px = leave_out_fold(data, px, train_idx, val_idx)
# Train the LRM
LRM.fit(X_train, y_train)
# Save this LRM performance
probs.extend(list(LRM.predict_proba(X_val)[:,1]))
preds.extend(list(LRM.predict(X_val)))
y_ref.extend(y_val)
val_recs.extend(val_px)
fpr, tpr, thresholds = roc_curve(y_ref, probs)
"""
Do ROC analysis and get optimal threshold
for sens ~= spec
"""
i = np.arange(len(tpr))
roc = pd.DataFrame({'fpr' : pd.Series(fpr, index=i),
'tpr' : pd.Series(tpr, index = i),
'1-fpr' : pd.Series(1-fpr, index = i),
'tf' : pd.Series(tpr - (1-fpr), index = i),
'thresholds' : pd.Series(thresholds, index = i)
})
idx = (roc.tf).abs().argmin()
thresh = roc.thresholds.iloc[idx]
auc_acc = auc(fpr,tpr)
# Perform classification with optimal threshold
preds_opt = map(int, binarize(np.array(probs).reshape(1,-1), threshold=thresh)[0])
GAMMA = thresh
ACC, SENS, SPEC = eval_model(preds_opt, y_ref)
return [ACC,SENS,SPEC,auc_acc]
开发者ID:Rendiere,项目名称:Masters_Round3,代码行数:56,代码来源:vanilla_5AUG.py
示例20: test_model
def test_model(LRM, test_data, TBI = 0, save = 0):
global GAMMA
"""
Evaluate a trained Logistic Regression model
Inputs:
=======
LRM: Trained Logistic Regression Model
test_data: Data to test the LRM on
return: Flag - To return [spec, sens, acc] or just acc
TBI: Flag - To compute results using TBI or not
"""
# Get the labels
y = test_data.TBResult.values
# Get the names of the recordings in the test set
test_recs = test_data.StudyNum.values
# Keep the feature data for training
X = test_data.drop(["StudyNum","TBResult"], axis = 1)
probs = LRM.predict_proba(X)[:,1]
"""
Calculate AUC acc using ROC analysis
"""
# Get FPR and TPR for the test set
fpr, tpr, thresh = roc_curve(y,probs)
# Calc AUC acc
auc_acc = auc(fpr,tpr)
pred = map(int,binarize(np.array(probs).reshape(1,-1),threshold = GAMMA)[0])
# Do the same thing but with pandas
# i = np.arange(len(probs))
# temp_df = pd.DataFrame({'StudyNum': pd.Series(test_recs, index = i),
# 'Probability': pd.Series(probs, index = i),
# 'TBResult': pd.Series(y, index = i),
# 'Pred': 0})
# # This makes all predictions = 1 where Prob >= Gamma
# temp_df.ix[temp_df.Probability >= GAMMA,'Pred'] = 1
# pred = temp_df.Pred.values
if TBI == 0:
acc,sens,spec = eval_model(pred, y)
return [acc, sens, spec, auc_acc]
else:
acc,sens,spec = eval_model(pred, y, probs = probs, test_recs = test_recs, TBI = 1, save = save)
return [acc, sens, spec]
开发者ID:Rendiere,项目名称:Masters_Round3,代码行数:55,代码来源:windows_seeded_new.py
注:本文中的sklearn.preprocessing.binarize函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论