本文整理汇总了Python中sklearn.preprocessing.FunctionTransformer类的典型用法代码示例。如果您正苦于以下问题:Python FunctionTransformer类的具体用法?Python FunctionTransformer怎么用?Python FunctionTransformer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了FunctionTransformer类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_function_transformer_future_warning
def test_function_transformer_future_warning(validate, expected_warning):
# FIXME: to be removed in 0.22
X = np.random.randn(100, 10)
transformer = FunctionTransformer(validate=validate)
with pytest.warns(expected_warning) as results:
transformer.fit_transform(X)
if expected_warning is None:
assert len(results) == 0
开发者ID:SuryodayBasak,项目名称:scikit-learn,代码行数:8,代码来源:test_function_transformer.py
示例2: test_kw_arg
def test_kw_arg():
X = np.linspace(0, 1, num=10).reshape((5, 2))
F = FunctionTransformer(np.around, kw_args=dict(decimals=3))
# Test that rounding is correct
assert_array_equal(F.transform(X),
np.around(X, decimals=3))
开发者ID:fabionukui,项目名称:scikit-learn,代码行数:8,代码来源:test_function_transformer.py
示例3: test_inverse_transform
def test_inverse_transform():
X = np.array([1, 4, 9, 16]).reshape((2, 2))
# Test that inverse_transform works correctly
F = FunctionTransformer(
func=np.sqrt,
inverse_func=np.around, inv_kw_args=dict(decimals=3))
testing.assert_array_equal(
F.inverse_transform(F.transform(X)),
np.around(np.sqrt(X), decimals=3))
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:10,代码来源:test_function_transformer.py
示例4: test_functiontransformer_vs_sklearn
def test_functiontransformer_vs_sklearn():
# Compare msmbuilder.preprocessing.FunctionTransformer
# with sklearn.preprocessing.FunctionTransformer
functiontransformerr = FunctionTransformerR()
functiontransformerr.fit(np.concatenate(trajs))
functiontransformer = FunctionTransformer()
functiontransformer.fit(trajs)
y_ref1 = functiontransformerr.transform(trajs[0])
y1 = functiontransformer.transform(trajs)[0]
np.testing.assert_array_almost_equal(y_ref1, y1)
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:14,代码来源:test_preprocessing.py
示例5: test_check_inverse
def test_check_inverse():
X_dense = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))
X_list = [X_dense,
sparse.csr_matrix(X_dense),
sparse.csc_matrix(X_dense)]
for X in X_list:
if sparse.issparse(X):
accept_sparse = True
else:
accept_sparse = False
trans = FunctionTransformer(func=np.sqrt,
inverse_func=np.around,
accept_sparse=accept_sparse,
check_inverse=True,
validate=True)
assert_warns_message(UserWarning,
"The provided functions are not strictly"
" inverse of each other. If you are sure you"
" want to proceed regardless, set"
" 'check_inverse=False'.",
trans.fit, X)
trans = FunctionTransformer(func=np.expm1,
inverse_func=np.log1p,
accept_sparse=accept_sparse,
check_inverse=True,
validate=True)
Xt = assert_no_warnings(trans.fit_transform, X)
assert_allclose_dense_sparse(X, trans.inverse_transform(Xt))
# check that we don't check inverse when one of the func or inverse is not
# provided.
trans = FunctionTransformer(func=np.expm1, inverse_func=None,
check_inverse=True, validate=True)
assert_no_warnings(trans.fit, X_dense)
trans = FunctionTransformer(func=None, inverse_func=np.expm1,
check_inverse=True, validate=True)
assert_no_warnings(trans.fit, X_dense)
开发者ID:SuryodayBasak,项目名称:scikit-learn,代码行数:40,代码来源:test_function_transformer.py
示例6: FunctionTransformer
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import PReLU
from keras.utils import np_utils, generic_utils
from sklearn.preprocessing import FunctionTransformer
#read data
train_tour1 = pd.read_csv('numerai_training_data.csv')
feature = pd.DataFrame(train_tour1.ix[:,0:21])
target = pd.DataFrame(train_tour1.target)
#log feature
transformer = FunctionTransformer(np.log1p)
feature_log = transformer.transform(feature)
#add all feature
feature_log = pd.DataFrame(feature_log)
feature_all = pd.concat([feature, feature_log], axis =1 )
#separate target and features
feature_all = np.asarray(feature_all)
target = np.asarray(target)
# convert list of labels to binary class matrix
target = np_utils.to_categorical(target)
# pre-processing: divide by max and substract mean
scale = np.max(feature_all)
开发者ID:AppliedML,项目名称:Numerai,代码行数:30,代码来源:nn3layersHyperopt.py
示例7: list
#
# dataframe slicing
# selectionlist gets passed the parameterlist from json object
selectionlist = []
selectionlist.extend((args.list))
# read data,
df1=pd.read_table('penalties.csv', sep=';',header=0)
# all headers
colnames = list(df1.columns.values)
# slice data
X=df1.ix[:,selectionlist]
# sqrt transform the heavily skewed data
transformer = FunctionTransformer(np.sqrt)
Xtran = transformer.transform(X)
X = pd.DataFrame(Xtran)
selectionheaders = selectionlist
oldnames = X.columns.values
# rename all columns with original columnheaders
X.rename(columns=dict(zip(oldnames, selectionheaders)), inplace=True)
# rest indizes
colnamesrest = [x for x in colnames if x not in selectionlist]
Rest = df1.ix[:, colnamesrest]
# deletes multiplier columns
del Rest['multiplier']
#plot 3by3 scatterplotmatrix
from pandas.tools.plotting import scatter_matrix
scatter_matrix(X, alpha=0.2, figsize=(3, 3))
开发者ID:Cricket156,项目名称:Forna_Clustering,代码行数:30,代码来源:vis.py
示例8: test_function_transformer_frame
def test_function_transformer_frame():
pd = pytest.importorskip('pandas')
X_df = pd.DataFrame(np.random.randn(100, 10))
transformer = FunctionTransformer(validate=False)
X_df_trans = transformer.fit_transform(X_df)
assert hasattr(X_df_trans, 'loc')
开发者ID:SuryodayBasak,项目名称:scikit-learn,代码行数:6,代码来源:test_function_transformer.py
示例9: FunctionTransformer
Any step in the pipeline must be an object that implements the fit and transform methods. The FunctionTransformer creates an object with these methods out of any Python function that you pass to it. We'll use it to help select subsets of data in a way that plays nicely with pipelines.
You are working with numeric data that needs imputation, and text data that needs to be converted into a bag-of-words. You'll create functions that separate the text from the numeric variables and see how the .fit() and .transform() methods work.
INSTRUCTIONS
100XP
Compute the selector get_text_data by using a lambda function and FunctionTransformer() to obtain all 'text' columns.
Compute the selector get_numeric_data by using a lambda function and FunctionTransformer() to obtain all the numeric columns (including missing data). These are 'numeric' and 'with_missing'.
Fit and transform get_text_data using the .fit_transform() method with sample_df as the argument.
Fit and transform get_numeric_data using the same approach as above.
'''
# Import FunctionTransformer
from sklearn.preprocessing import FunctionTransformer
# Obtain the text data: get_text_data
get_text_data = FunctionTransformer(lambda x: x['text'], validate=False)
# Obtain the numeric data: get_numeric_data
get_numeric_data = FunctionTransformer(lambda x: x[['numeric', 'with_missing']], validate=False)
# Fit and transform the text data: just_text_data
just_text_data = get_text_data.fit_transform(sample_df)
# Fit and transform the numeric data: just_numeric_data
just_numeric_data = get_numeric_data.fit_transform(sample_df)
# Print head to check results
print('Text Data')
print(just_text_data.head())
print('\nNumeric Data')
print(just_numeric_data.head())
开发者ID:shonkhochil,项目名称:Coursera-Repo,代码行数:31,代码来源:04-multiple-types-of-proessing-function-transformer.py
注:本文中的sklearn.preprocessing.FunctionTransformer类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论