• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python data.MinMaxScaler类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.preprocessing.data.MinMaxScaler的典型用法代码示例。如果您正苦于以下问题:Python MinMaxScaler类的具体用法?Python MinMaxScaler怎么用?Python MinMaxScaler使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了MinMaxScaler类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_min_max_scaler_iris

def test_min_max_scaler_iris():
    X = iris.data
    scaler = MinMaxScaler()
    # default params
    X_trans = scaler.fit_transform(X)
    assert_array_almost_equal(X_trans.min(axis=0), 0)
    assert_array_almost_equal(X_trans.min(axis=0), 0)
    assert_array_almost_equal(X_trans.max(axis=0), 1)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    # not default params: min=1, max=2
    scaler = MinMaxScaler(feature_range=(1, 2))
    X_trans = scaler.fit_transform(X)
    assert_array_almost_equal(X_trans.min(axis=0), 1)
    assert_array_almost_equal(X_trans.max(axis=0), 2)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    # min=-.5, max=.6
    scaler = MinMaxScaler(feature_range=(-.5, .6))
    X_trans = scaler.fit_transform(X)
    assert_array_almost_equal(X_trans.min(axis=0), -.5)
    assert_array_almost_equal(X_trans.max(axis=0), .6)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    # raises on invalid range
    scaler = MinMaxScaler(feature_range=(2, 1))
    assert_raises(ValueError, scaler.fit, X)
开发者ID:CodeGenerator,项目名称:scikit-learn,代码行数:30,代码来源:test_data.py


示例2: pearson

def pearson(A, B, scale=True):
    correlation = 0
    if scale:
        scaler = MinMaxScaler()
        A = scaler.fit_transform(A)
        B = scaler.fit_transform(B)
    for i in range(A.shape[1]):
        correlation = correlation + pearsonr(A[:, i], B[:, i])[0]
    return correlation / A.shape[1]
开发者ID:rosenthj,项目名称:ML_HS15,代码行数:9,代码来源:data_handling.py


示例3: test_min_max_scaler_1d

def test_min_max_scaler_1d():
    """Test scaling of dataset along single axis"""
    rng = np.random.RandomState(0)
    X = rng.randn(5)
    X_orig_copy = X.copy()

    scaler = MinMaxScaler()
    X_scaled = scaler.fit(X).transform(X)
    assert_array_almost_equal(X_scaled.min(axis=0), 0.0)
    assert_array_almost_equal(X_scaled.max(axis=0), 1.0)

    # check inverse transform
    X_scaled_back = scaler.inverse_transform(X_scaled)
    assert_array_almost_equal(X_scaled_back, X_orig_copy)

    # Test with 1D list
    X = [0., 1., 2, 0.4, 1.]
    scaler = MinMaxScaler()
    X_scaled = scaler.fit(X).transform(X)
    assert_array_almost_equal(X_scaled.min(axis=0), 0.0)
    assert_array_almost_equal(X_scaled.max(axis=0), 1.0)

    # Constant feature.
    X = np.zeros(5)
    scaler = MinMaxScaler()
    X_scaled = scaler.fit(X).transform(X)
    assert_greater_equal(X_scaled.min(), 0.)
    assert_less_equal(X_scaled.max(), 1.)
开发者ID:0x0all,项目名称:scikit-learn,代码行数:28,代码来源:test_data.py


示例4: test_min_max_scaler_zero_variance_features

def test_min_max_scaler_zero_variance_features():
    """Check min max scaler on toy data with zero variance features"""
    X = [[0., 1., +0.5],
         [0., 1., -0.1],
         [0., 1., +1.1]]

    X_new = [[+0., 2., 0.5],
             [-1., 1., 0.0],
             [+0., 1., 1.5]]

    # default params
    scaler = MinMaxScaler()
    X_trans = scaler.fit_transform(X)
    X_expected_0_1 = [[0., 0., 0.5],
                      [0., 0., 0.0],
                      [0., 0., 1.0]]
    assert_array_almost_equal(X_trans, X_expected_0_1)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    X_trans_new = scaler.transform(X_new)
    X_expected_0_1_new = [[+0., 1., 0.500],
                          [-1., 0., 0.083],
                          [+0., 0., 1.333]]
    assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2)

    # not default params
    scaler = MinMaxScaler(feature_range=(1, 2))
    X_trans = scaler.fit_transform(X)
    X_expected_1_2 = [[1., 1., 1.5],
                      [1., 1., 1.0],
                      [1., 1., 2.0]]
    assert_array_almost_equal(X_trans, X_expected_1_2)
开发者ID:CodeGenerator,项目名称:scikit-learn,代码行数:33,代码来源:test_data.py



注:本文中的sklearn.preprocessing.data.MinMaxScaler类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python data.OneHotEncoder类代码示例发布时间:2022-05-27
下一篇:
Python data.scale函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap