本文整理汇总了Python中sklearn.svm.NuSVC类的典型用法代码示例。如果您正苦于以下问题:Python NuSVC类的具体用法?Python NuSVC怎么用?Python NuSVC使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了NuSVC类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: predict
def predict(transformed_data, args, trn_label ,tst_label):
print 'imgpred',
sys.stdout.flush()
(ndim, nsample , nsubjs) = transformed_data.shape
accu = np.zeros(shape=nsubjs)
tst_data = np.zeros(shape = (ndim,nsample))
trn_data = np.zeros(shape = (ndim,(nsubjs-1)*nsample))
# image stimulus prediction
for tst_subj in range(nsubjs):
tst_data = transformed_data[:,:,tst_subj]
trn_subj = range(nsubjs)
trn_subj.remove(tst_subj)
for m in range(nsubjs-1):
trn_data[:,m*nsample:(m+1)*nsample] = transformed_data[:,:,trn_subj[m]]
# scikit-learn svm for classification
#clf = NuSVC(nu=0.5, kernel = 'linear')
clf = NuSVC(nu=0.5, kernel = 'linear')
clf.fit(trn_data.T, trn_label)
pred_label = clf.predict(tst_data.T)
accu[tst_subj] = sum(pred_label == tst_label)/float(len(pred_label))
return accu
开发者ID:cameronphchen,项目名称:pHA,代码行数:29,代码来源:imgpred.py
示例2: svm
class svm():
def __init__(self):
# self.clf = SVC(kernel='rbf')
self.clf = NuSVC()
def train(self, inputs):
# Parameters:
# inputs: An array of Input objects containing input vectors along with their corresponding labels.
# Creates lists to use for fitting model
X = []
Y = []
for data in inputs:
X.append((data.x/np.linalg.norm(data.x)))
Y.append(data.y)
# Fit model
self.clf.fit(X, Y)
def predict(self, input):
# Parameters:
# input: An Input object containing an input vector to be used for predicting a label.
x = input.x/np.linalg.norm(input.x)
if isinstance(input, Input):
return self.clf.predict(x)
else:
x = input/np.linalg.norm(input)
return self.clf.predict(x)
开发者ID:amagoon,项目名称:Neural-Network-Tools,代码行数:28,代码来源:Backpropagator.py
示例3: predict_loo
def predict_loo(transformed_data, args, trn_label ,tst_label):
print 'imgpred loo',
print args.loo,
sys.stdout.flush()
(ndim, nsample , nsubjs) = transformed_data.shape
loo = args.loo
loo_idx = range(nsubjs)
loo_idx.remove(loo)
#tst_data = np.zeros(shape = (ndim,nsample))
trn_data = np.zeros(shape = (ndim,(nsubjs-1)*nsample))
# image stimulus prediction
# tst_data : ndim x nsample
tst_data = transformed_data[:,:,loo]
for m in range(len(loo_idx)):
trn_data[:,m*nsample:(m+1)*nsample] = transformed_data[:,:,loo_idx[m]]
# scikit-learn svm for classification
clf = NuSVC(nu=0.5, kernel = 'linear')
clf.fit(trn_data.T, trn_label)
pred_label = clf.predict(tst_data.T)
accu = sum(pred_label == tst_label)/float(len(pred_label))
return accu
开发者ID:cameronphchen,项目名称:pHA,代码行数:28,代码来源:imgpred.py
示例4: __init__
class RbfSVM:
def __init__(self):
self.clf = NuSVC(nu=0.7, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, verbose=False, max_iter=-1)
self.pattern ='(?u)\\b[A-Za-z]{3,}'
self.tfidf = TfidfVectorizer(sublinear_tf=False, use_idf=True, smooth_idf=True, stop_words='english', token_pattern=self.pattern, ngram_range=(1, 3))
def train(self,fileName):
print "RbfSVM Classifier is being trained"
table = pandas.read_table(fileName, sep="\t", names=["cat", "message"])
X_train = self.tfidf.fit_transform(table.message)
Y_train = []
for item in table.cat:
Y_train.append(int(item))
self.clf.fit(X_train, Y_train)
print "RbfSVM Classifier has been trained"
def classify(self,cFileName, rFileName):
table = pandas.read_table(cFileName, names=["message"])
X_test = self.tfidf.transform(table.message)
print "Data have been classified"
with open(rFileName,'w') as f:
for item in self.clf.predict(X_test).astype(str):
f.write(item+'\n')
def validate(self,fileName):
table = pandas.read_table(fileName, sep="\t", names=["cat", "message"])
X_validate = self.tfidf.transform(table.message)
Y_validated = self.clf.predict(X_validate).astype(str)
totalNum = len(table.cat)
errorCount = 0
for i in range(0,totalNum):
if int(table.cat[i])!=int(Y_validated[i]):
errorCount += 1
print "Data have been validated! Precision={}".format((totalNum-errorCount)/float(totalNum))
开发者ID:richelite,项目名称:classify,代码行数:33,代码来源:lib.py
示例5: fit
def fit(self, X, Y, W):
clf = NuSVC(nu=self.nu, kernel=self.kernel, degree=self.degree,
gamma=self.gamma, coef0=self.coef0, shrinking=self.shrinking,
probability=self.probability, tol=self.tol, cache_size=self.cache_size,
max_iter=self.max_iter)
if W is not None:
return NuSVMClassifier(clf.fit(X, Y.reshape(-1), W.reshape(-1)))
return NuSVMClassifier(clf.fit(X, Y.reshape(-1)))
开发者ID:vishnu-locket,项目名称:orange3,代码行数:8,代码来源:svm.py
示例6: SVM_nuSVC
def SVM_nuSVC(self):
clf = NuSVC(nu=0.5, kernel=b'rbf', degree=3, gamma='auto', coef0=0.0,
shrinking=True, probability=False, tol=0.001,
cache_size=200, class_weight=None, verbose=False,
max_iter=-1, decision_function_shape=None,
random_state=None)
print('nuSVC Classifier is fitting...')
clf.fit(self.X_train, self.y_train)
return clf
开发者ID:yqji,项目名称:MySK,代码行数:9,代码来源:Classifier.py
示例7: svc_nu
def svc_nu(X_train, categories,X_test, test_categories):
from sklearn.svm import NuSVC
svm_nu_classifier = NuSVC().fit(X_train, categories)
y_svm_predicted = svm_nu_classifier.predict(X_test)
print '\n Here is the classification report for support vector machine classiffier:'
print metrics.classification_report(test_categories, y_svm_predicted)
''''
开发者ID:LewkowskiArkadiusz,项目名称:magistrerka_app,代码行数:11,代码来源:train.py
示例8: NonLinearSupportVectorMachine
def NonLinearSupportVectorMachine(x_train, y_train, x_cv, y_cv):
"""
Non Linear Support Vector Machine
"""
#print "Classifier: Support Vector Machine"
clfr = NuSVC(probability=False)
clfr.fit(x_train, y_train)
#print 'Accuracy in training set: %f' % clfr.score(x_train, y_train)
#if y_cv != None:
#print 'Accuracy in cv set: %f' % clfr.score(x_cv, y_cv)
return clfr
开发者ID:tbs1980,项目名称:Kaggle_DecMeg2014,代码行数:12,代码来源:Classify.py
示例9: testing
def testing():
plot_x = range(1, 10)
plot_y = []
for i in xrange(1,10):
vals = []
for _ in xrange(20):
train_data, validation_data, train_labels, validation_labels = split_data()
clf = NuSVC(**get_kwargs(i))
clf.fit(train_data, train_labels)
vals.append(check_fit(clf.predict(validation_data), validation_labels))
plot_y.append(np.mean(vals))
plot_results(plot_x, plot_y)
开发者ID:MathYourLife,项目名称:kaggle-scikitlearn,代码行数:13,代码来源:07-NuSVC-default-parameters.py
示例10: fit_model_7
def fit_model_7(self,toWrite=False):
model = NuSVC(probability=True,kernel='linear')
for data in self.cv_data:
X_train, X_test, Y_train, Y_test = data
model.fit(X_train,Y_train)
pred = model.predict_proba(X_test)[:,1]
print("Model 7 score %f" % (logloss(Y_test,pred),))
if toWrite:
f2 = open('model7/model.pkl','w')
pickle.dump(model,f2)
f2.close()
开发者ID:JakeMick,项目名称:kaggle,代码行数:13,代码来源:days_work.py
示例11: test_nusvc
def test_nusvc():
# print '==== NuSVC ===='
# print 'Training...'
clf = NuSVC()
clf = clf.fit( train_data, train_labels )
# print 'Predicting...'
output = clf.predict(test_data).astype(int)
predictions_file = open("CLF.csv", "wb")
open_file_object = csv.writer(predictions_file)
open_file_object.writerow(["PassengerId","Survived"])
open_file_object.writerows(zip(test_id, output))
predictions_file.close()
# print 'Done.'
print 'NuSVC : '
开发者ID:Raphael-De-Wang,项目名称:Semestre02,代码行数:16,代码来源:SVM.py
示例12: __init__
def __init__(self, recurrence=30, w_size=20,hybrid = False):
self.learner = NuSVC()
#size of each training batch
self.batch_size = w_size * (recurrence)
#size of the sliding window for sharpé ratio
self.window_size = 5 * self.batch_size
#true if part of a hybrid learner
self.hybrid = hybrid
# the data matrix of a single batch
# Data-Vector = r_1, ... r_n
# with r_n := r_n - r_n-1
self.returns = list()
#training data for experimental apporach
self.train_dat = list()
self.labels = list()
self.decisions = list()
self.recurrence = recurrence
self.last_decision = 0
self.ready = False
self.tstep = 0
self.prices = list()
return
开发者ID:Cypher42,项目名称:AutoBuffett,代码行数:26,代码来源:NLSVC.py
示例13: __init__
def __init__(self,adaption = 0.5,transactionCost = 0.001, recurrence=35, realy_recurrent=False, w_size=20,label_par='r'):
self.learner = NuSVC()
self.transactionCost = transactionCost
self.adaption = adaption
#size of each training batch
self.batch_size = 200 * (recurrence)
#size of the sliding window for sharpé ratio
self.window_size = w_size * self.batch_size
# the data matrix of a single batch
# Data-Vector = r_1, ... r_n, prediction_t-1
# with r_n := r_n - r_n-1
self.returns = list()
self.labels = list()
self.decisions = [0]
self.weighted_returns = list()
#self.rng = rnj.Learner()
self.recurrence = recurrence
self.last_decision = 0
self.ready = False
self.tstep = 0
self.recurrent = realy_recurrent
self.prices = list()
self.label_par = label_par
self.sharpeA_old = 1
self.sharpeB_old = 1
return
开发者ID:Cypher42,项目名称:AutoBuffett,代码行数:31,代码来源:NLSVM.py
示例14: nu_support_vector_machines
def nu_support_vector_machines(corpus, documents_training, documents_test, words_features, kernel, nu):
"""
Another implementation of Support Vector Machines algorithm.
:param corpus:
:param documents_training:
:param documents_test:
:param words_features:
:param kernel:
:param nu:
:return:
"""
print
print "----- nu-Support Vector Machines algorithm ------"
print "Creating Training Vectors..."
categories = util_classify.get_categories(corpus)
array_vector_training = []
array_categories = []
for (id, original_category, annotations) in documents_training:
array_vector_training.append(util_classify.transform_document_in_vector(annotations, words_features, corpus))
array_categories.append(util_classify.get_categories(corpus).index(original_category))
print "Training the algorithm..."
classifier = NuSVC(nu=nu, kernel=kernel)
X_train_features = []
y_train_categories = []
# Train all
for (id, original_category, annotations) in documents_training:
X_train_features.append(util_classify.transform_document_in_vector(annotations, words_features, corpus))
y_train_categories.append(original_category)
classifier.fit(np.array(X_train_features), np.array(y_train_categories))
print "Calculating metrics..."
estimated_categories = []
original_categories = []
for (id, cat_original, annotations) in documents_test:
cat_estimated = classifier.predict(np.array((util_classify.transform_document_in_vector(annotations, words_features, corpus))))
estimated_categories.append(categories.index(cat_estimated))
original_categories.append(categories.index(cat_original))
return original_categories, estimated_categories
开发者ID:itecsde,项目名称:classification,代码行数:45,代码来源:classify_methods.py
示例15: __init__
class Classifier:
def __init__(self, objective_data, subjective_data):
OBJECTIVE = 0
SUBJECTIVE = 1
self.objective_data = objective_data
self.subjective_data = subjective_data
self.text = objective_data + subjective_data
self.labels = [OBJECTIVE for i in objective_data] + [SUBJECTIVE for i in subjective_data]
tuple_list = zip(self.text, self.labels)
random.shuffle(tuple_list)
self.text = [x for x,y in tuple_list]
self.label = [y for x,y in tuple_list]
self.count_vectorizer = CountVectorizer(stop_words="english", min_df=3)
# count vectorizer and specific classifier that will be used
self.counts = self.count_vectorizer.fit_transform(self.text)
self.classifier = None
self.tf_transformer = TfidfTransformer(use_idf=True)
self.frequencies = self.tf_transformer.fit_transform(self.counts)
def multinomialNB(self):
self.classifier = MultinomialNB(alpha=.001)
self.classifier.fit(self.frequencies, self.labels)
def predict(self, examples):
example_counts = self.count_vectorizer.transform(examples)
example_tf = self.tf_transformer.transform(example_counts)
predictions = self.classifier.predict(example_tf)
return predictions
def linearSVC(self):
self.classifier = LinearSVC()
self.classifier.fit(self.frequencies, self.labels)
def nuSVC(self):
self.classifier = NuSVC()
self.classifier.fit(self.frequencies, self.labels)
def accurracy(self, text, labels):
prediction = self.predict(text)
accurracy = 0
for i in range(len(prediction)):
if prediction[i] == labels[i]:
accurracy += 1
return accurracy / float(len(prediction))
def f1(self, text, actual):
prediction = self.predict(text)
return f1_score(actual, prediction)
开发者ID:alokedesai,项目名称:NLP-Final-Assignment,代码行数:58,代码来源:classifier.py
示例16: sigmoidNuSVC
def sigmoidNuSVC():
maxRandomPerformance = []
for gamma in xrange(1,200):
clf = NuSVC(kernel="sigmoid",gamma=gamma)
clf.fit(trainData, trainLabel)
maxRandomPerformance.append(clf.score(validationData, validationLabel))
gammaValue = maxRandomPerformance.index(max(maxRandomPerformance)) + 1
clfFinal = NuSVC(kernel='sigmoid', gamma=gammaValue)
clfFinal.fit(trainData,trainLabel)
score = clfFinal.score(testData,testLabel)
guideToGraph['Sigmoid Nu-SVC'] = score
开发者ID:RonakSumbaly,项目名称:Malware-Classification,代码行数:13,代码来源:classifications.py
示例17: polyNuSVC
def polyNuSVC():
maxRandomPerformance = []
for deg in xrange(1,200):
clf = NuSVC(kernel="poly",degree=deg)
clf.fit(trainData, trainLabel)
maxRandomPerformance.append(clf.score(validationData, validationLabel))
gammaValue = maxRandomPerformance.index(max(maxRandomPerformance)) + 1
clfFinal = NuSVC(kernel='poly', gamma=gammaValue)
clfFinal.fit(trainData,trainLabel)
score = clfFinal.score(testData,testLabel)
guideToGraph['Polynomial Nu-SVC'] = score
开发者ID:RonakSumbaly,项目名称:Malware-Classification,代码行数:14,代码来源:classifications.py
示例18: fit_nusvc
def fit_nusvc(X_train, y_train, nu, kernel, gamma=0.1, degree=4, coef0=1):
print "Training, nu = ", nu
start = time.time()
clf = NuSVC(nu=nu, kernel=kernel, degree=degree, coef0=coef0)
clf.fit(X_train, y_train)
return clf, time.time() - start
开发者ID:Raz0r,项目名称:lightning,代码行数:6,代码来源:plot_nusvm.py
示例19: range
y_train = labels[100:172,i]
X_test = sample2
y_test = labels[272:,i]
else:
X_train = training
y_train = labels[:172,i]
X_test = sampletest
y_test = labels[172:,i]
#best case: 67, 1
posterior = np.empty([100,72,6])
for j in range(1,67):
for k in range(1,2):
box = np.zeros([6,6])
accuracy = np.zeros(72)
for m in range(0,10):
nsvc = NuSVC(nu=j/100.0, degree=k)
nsvc.fit(X_train, y_train)
y_pred = nsvc.predict(X_test)
n=0
for i in range(0,len(y_pred)):
if y_pred[i] == y_test[i]:
#print i, y_pred[i], y_test[i]
n = n+1
accuracy[i] = accuracy[i]+1
box[y_test[i]-1,y_pred[i]-1] = box[y_test[i]-1,y_pred[i]-1] + 1
#posterior[m] = knc.predict_proba(X_test)
#print j, k, np.mean(accuracy)/0.72, np.std(accuracy)/0.72
print j, k, sum(accuracy[0:8])/8.0, sum(accuracy[8:18])/10.0, sum(accuracy[18:30])/12.0, sum(accuracy[56:72])/16.0, sum(accuracy[30:43])/13.0, sum(accuracy[43:56])/13.0, sum(accuracy)/72.0
'''
means = np.empty([72,6])
开发者ID:d-giles,项目名称:KeplerML,代码行数:31,代码来源:nusvc.py
示例20: SVC
svc_new = SVC(probability=True, C=.000001, kernel='poly', gamma=4,
degree=4)
svc_new.fit(train_x_reduced, train_y_practice)
print svc_new.score(test_x_reduced, test_y_practice)
"""
"""
parameters = {'degree':(1, 3, 6)}
svclass = NuSVC(kernel='poly', probability=True, gamma=0, nu=.5852, tol=.00001)
clf = GridSearchCV(svclass, parameters, cv=10)
clf.fit(train_x_reduced, train_y_practice)
print "SVC"
print clf.best_estimator_
print clf.best_score_
print clf.best_params_
"""
svc_new = NuSVC(kernel='poly', probability=True, gamma=0, nu=.5852, tol=.00001)
svc_new.fit(train_x_reduced, train_y_practice)
print svc_new.score(test_x_reduced, test_y_practice)
print 'Predicting'
estimator = SelectKBest(score_func=f_classif, k=components)
estimator.fit(train_x, train_y_leaderboard)
train_x_reduced = estimator.transform(train_x)
test_x_reduced = estimator.transform(test_x)
print train_x.shape
print train_x_reduced.shape
#svc_new = SVC(probability=True, C=.000001, kernel='poly', gamma=4,
# degree=4)
svc_new = NuSVC(kernel='poly', probability=True, gamma=0, nu=.5852, tol=.00001)
开发者ID:rdimaggio,项目名称:kaggle_overfitting,代码行数:31,代码来源:analysis_v1.py
注:本文中的sklearn.svm.NuSVC类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论