• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python svm.SVR类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.svm.SVR的典型用法代码示例。如果您正苦于以下问题:Python SVR类的具体用法?Python SVR怎么用?Python SVR使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了SVR类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: svr_main

def svr_main(X, Y):
    X_train = X[:TRAIN_SIZE]
    Y_train = Y[:TRAIN_SIZE]
    X_test = X[TRAIN_SIZE:]
    Y_test = Y[TRAIN_SIZE:]

    clf = SVR(kernel='rbf', C=1e3, gamma=0.00001)
    #clf.fit(X_train,Y_train)
    #y_pred = clf.predict(X_test)
    #plt.plot(X_test, y_pred, linestyle='-', color='red') 

    #clf = GradientBoostingRegressor(n_estimators=100,max_depth=1)
    #clf = DecisionTreeRegressor(max_depth=25)
    #clf = ExtraTreesRegressor(n_estimators=2000,max_depth=14)
    #clf = xgb.XGBRegressor(n_estimators=2000,max_depth=25)
    #clf = RandomForestRegressor(n_estimators=1000,max_depth=26,n_jobs=7)
    predict_list = []
    for i in xrange(TEST_SIZE):
        X = [ [x] for x in xrange(i, TRAIN_SIZE+i)]
        clf.fit(X, Y[i:TRAIN_SIZE+i])
        y_pred = clf.predict([TRAIN_SIZE+1+i])
        predict_list.append(y_pred)

    print "mean_squared_error:%s"%mean_squared_error(Y_test, predict_list)
    print "sqrt of mean_squared_error:%s"%np.sqrt(mean_squared_error(Y_test, predict_list))
    origin_data = Y_test
    print "origin data:%s"%origin_data
    plt.plot([ x for x in xrange(TRAIN_SIZE+1, TRAIN_SIZE+TEST_SIZE+1)], predict_list, linestyle='-', color='red', label='prediction model')  
    plt.plot(X_test, Y_test, linestyle='-', color='blue', label='actual model') 
    plt.legend(loc=1, prop={'size': 12})
    plt.show()
开发者ID:zhengze,项目名称:svm-prediction,代码行数:31,代码来源:svm-prediction.py


示例2: analyze

def analyze(data, label, num_folds):
    # Partition data into folds
    n = len(data) // num_folds
    data_folds = [data[i:i+n] for i in range(0, len(data), n)]
    label_folds = [label[i:i+n] for i in range(0, len(label), n)]

    lin_reg_error = 0
    
    cs = [4**c for c in range(-10, 0, 1)]
    svm_error = [0] * len(cs)
    svm_std = [0] * len(cs)
    # for i in range(0, num_folds):
    #     test_data = data_folds[i]
    #     test_label = label_folds[i]
    #     train_data = []
    #     train_label = []
    #     for j in range(num_folds):
    #         if i != j:
    #             train_data += data_folds[j]
    #             train_label += label_folds[j]

    # model = linear_model.LinearRegression()
    # model.fit(data, label)
    # return model
        # lin_reg_error += np.mean(abs(model.predict(test_data) - test_label))
        #
        # for i2 in range(len(cs)):
        #     svm_classifier = SVR(gamma=cs[i2])
        #     svm_classifier.fit(train_data, train_label)
        #     svm_error[i2] += np.mean(abs(svm_classifier.predict(test_data) - test_label))
        #     svm_std[i2] += np.std(abs(svm_classifier.predict(test_data) - test_label))

    svm_c = SVR(gamma=4**-7)
    svm_c.fit(data, label)
    return svm_c
开发者ID:awood314,项目名称:fantasy-football-ml,代码行数:35,代码来源:analyze.py


示例3: svm

	def svm(self):
		"""
		C_range = np.logspace(-2, 10, 2)
		print C_range
		gamma_range = np.logspace(-9, 3, 2)
		print gamma_range
		param_grid = dict(gamma=gamma_range, C=C_range)
		cv = ShuffleSplit(len(self.search_inputs.y_train), n_iter=5, test_size=0.2, random_state=42)
		grid = GridSearchCV(SVR(verbose=True), param_grid=param_grid, cv=cv)
		#grid = GridSearchCV(svm.SVR(kernel='rbf', verbose=True), param_grid=param_grid, cv=cv)
		grid.fit(self.search_inputs.X_train, self.search_inputs.y_train)

		print("The best parameters are %s with a score of %0.2f"
			% (grid.best_params_, grid.best_score_))

		self.svm_preds = grid.predict(self.search_inputs.X_test)
		"""

		regression = SVR(kernel='rbf', C=1e3, gamma=0.1, verbose=True)
		regress_fit = regression.fit(self.search_inputs.X_train,self.search_inputs.y_train)
		self.svm_preds = regress_fit.predict(self.search_inputs.X_test)
		
		for i in range(0,len(self.svm_preds) - 1):
			if self.svm_preds[i] < 1:
				self.svm_preds[i] = 1.00
			elif self.svm_preds[i] > 3:
				self.svm_preds[i] = 3.00
		self.search_inputs.fin_df['relevance'] = np.array(self.svm_preds) # easy swap in / out 
		final_file_svm = self.search_inputs.fin_df.to_csv(self.fin_file_name+'_svm.csv', float_format='%.5f', index=False)
开发者ID:jms-dipadua,项目名称:machine-learn-py,代码行数:29,代码来源:learn_predict.py


示例4: fit

    def fit(self, start_date, end_date):

        for ticker in self.tickers:
            self.stocks[ticker] = Stock(ticker)

        params_svr = [{
            'kernel': ['rbf', 'sigmoid', 'linear'],
            'C': [0.01, 0.1, 1, 10, 100],
            'epsilon': [0.0000001, 0.000001, 0.00001]
            }]
        params = ParameterGrid(params_svr)

        # Find the split for training and CV
        mid_date = train_test_split(start_date, end_date)
        for ticker, stock in self.stocks.items():

            X_train, y_train = stock.get_data(start_date, mid_date, fit=True)
            # X_train = self.pca.fit_transform(X_train.values)
            X_train = X_train.values
            # pdb.set_trace()
            X_cv, y_cv = stock.get_data(mid_date, end_date)
            # X_cv = self.pca.transform(X_cv.values)
            X_cv = X_cv.values

            lowest_mse = np.inf
            for i, param in enumerate(params):
                svr = SVR(**param)
                # ada = AdaBoostRegressor(svr)
                svr.fit(X_train, y_train.values)
                mse = mean_squared_error(
                    y_cv, svr.predict(X_cv))
                if mse <= lowest_mse:
                    self.models[ticker] = svr

        return self
开发者ID:atremblay,项目名称:MLND,代码行数:35,代码来源:predictor.py


示例5: __init__

class HotTweets:
	''' Train and get tweet hotness '''

	def __init__(self, kernel='rbf', C=1e3, gamma=0.1, epsilon=0.1, n_comp=100):
		''' Prepare support vector regression ''' 
		self.svr = SVR(kernel=kernel, C=C, gamma=gamma, epsilon=epsilon, verbose=True)
		#self.svr = LogisticRegression(random_state=42, verbose=0)
		self.n_comp = n_comp

	def fit_scaler(self, dev, i_dev):
		''' Train normalizers for features and importances '''
		# importance scaler
		self.std_scaler_i = sklearn.preprocessing.StandardScaler()
		self.std_scaler_i.fit(i_dev)
		self.norm = sklearn.preprocessing.StandardScaler()
		self.norm.fit(dev[:,0:self.n_comp])
		self.n_comp = self.n_comp
	
	def train(self, features, importances):
		''' Train regression '''
		importances = self.std_scaler_i.transform(importances)
		features = self.norm.transform(features[:,0:self.n_comp])
		self.svr.fit(features, importances)
		
		
	def predict(self, features):
		''' Predict importances '''
		features = self.norm.transform(features[:,0:self.n_comp])
		results = self.svr.predict(features)
		#print results[0:100:5]
		results = self.std_scaler_i.inverse_transform(results)
		#print results[0:100:5]
		return results
开发者ID:makseq,项目名称:360,代码行数:33,代码来源:hotTweets.py


示例6: main

def main(args):
    (training_file, label_file, test_file, test_label, c, e) = args
    svr = SVR(C=float(c), epsilon=float(e), kernel='rbf')
    X = load_feat(training_file)
    y = [float(line.strip()) for line in open(label_file)]
    
    X = np.asarray(X)
     
    y = np.asarray(y)
    
    test_X = load_feat(test_file)
    test_X = np.asarray(test_X)
    test_X[np.isnan(test_X)] = 0

    svr.fit(X, y)
    
    pred = svr.predict(test_X)
    if test_label != 'none':
        test_y = [float(line.strip()) for line in open(test_label)]
        test_y = np.asarray(test_y)
        print 'MAE: ', mean_absolute_error(test_y, pred)
        print 'RMSE: ', sqrt(mean_squared_error(test_y, pred))
        print 'corrpearson: ', sp.stats.pearsonr(test_y, pred)
        print 'r-sqr: ', sp.stats.linregress(test_y, pred)[2] ** 2
        print mquantiles(test_y, prob=[0.10, 0.90])
        print mquantiles(pred, prob=[0.10, 0.90])
    with open(test_file + '.svr.pred', 'w') as output:
        for p in pred:
            print >>output, p
    return
开发者ID:mriosb08,项目名称:palodiem-QE,代码行数:30,代码来源:SVR.py


示例7: train

    def train(self, x, y, param_names, random_search=100,
              kernel_cache_size=2000, **kwargs):
        if self._debug:
            print "First training sample\n", x[0]
        start = time.time()
        scaled_x = self._set_and_preprocess(x=x, param_names=param_names)

        # Check that each input is between 0 and 1
        self._check_scaling(scaled_x=scaled_x)

        if self._debug:
            print "Shape of training data: ", scaled_x.shape
            print "Param names: ", self._used_param_names
            print "First training sample\n", scaled_x[0]
            print "Encode: ", self._encode

        # Do a random search
        c, gamma = self._random_search(random_iter=random_search, x=scaled_x,
                                       y=y, kernel_cache_size=kernel_cache_size)

        # Now train model
        try:
            svr = SVR(gamma=gamma, C=c, random_state=self._rng,
                      cache_size=kernel_cache_size)
            svr.fit(scaled_x, y)
            self._model = svr
        except Exception, e:
            print "Training failed", e.message
            svr = None
开发者ID:KEggensperger,项目名称:SurrogateBenchmarks,代码行数:29,代码来源:SupportVectorRegression.py


示例8: RunSVRScikit

    def RunSVRScikit(q):
      totalTimer = Timer()

      # Load input dataset.
      Log.Info("Loading dataset", self.verbose)
      # Use the last row of the training set as the responses.
      X, y = SplitTrainData(self.dataset)

      # Get all the parameters.
      c = re.search("-c (\d+\.\d+)", options)
      e = re.search("-e (\d+\.\d+)", options)
      g = re.search("-g (\d+\.\d+)", options)

      C = 1.0 if not c else float(c.group(1))
      epsilon = 1.0 if not e else float(e.group(1))
      gamma = 0.1 if not g else float(g.group(1))

      try:
        with totalTimer:
          # Perform SVR.
          model = SSVR(kernel='rbf', C=C, epsilon=epsilon, gamma=gamma)
          model.fit(X, y)
      except Exception as e:
        q.put(-1)
        return -1

      time = totalTimer.ElapsedTime()
      q.put(time)
      return time
开发者ID:MarcosPividori,项目名称:benchmarks,代码行数:29,代码来源:svr.py


示例9: test_regression

def test_regression():

    X, y = make_regression(n_samples=1000,
                           n_features=5,
                           n_informative=2,
                           n_targets=1,
                           random_state=123,
                           shuffle=False)

    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.3, random_state=123)

    svm = SVR(kernel='rbf')
    svm.fit(X_train, y_train)

    imp_vals, imp_all = feature_importance_permutation(
        predict_method=svm.predict,
        X=X_test,
        y=y_test,
        metric='r2',
        num_rounds=1,
        seed=123)

    assert imp_vals.shape == (X_train.shape[1], )
    assert imp_all.shape == (X_train.shape[1], 1)
    assert imp_vals[0] > 0.2
    assert imp_vals[1] > 0.2
    assert sum(imp_vals[3:]) <= 0.01
开发者ID:JJLWHarrison,项目名称:mlxtend,代码行数:28,代码来源:test_feature_importance.py


示例10: train_model

def train_model(train, test, labels):
    clf = SVR(C=1.0, epsilon=0.2)
    clf.fit(train, labels)
    #clf = GaussianNB()
    #clf.fit(train, labels)
    print "Good!"
    predictions = clf.predict(test)
    print predictions.shape
    predictions = pd.DataFrame(predictions, columns = ['relevance'])
    print "Good again!"
    print "Predictions head -------"
    print predictions.head()
    print predictions.shape
    print "TEST head -------"
    print test.head()
    print test.shape
    test['id'].to_csv("TEST_TEST.csv",index=False)
    predictions.to_csv("PREDICTIONS.csv",index=False)
    #test = test.reset_index()
    #predictions = predictions.reset_index()
    #test = test.groupby(level=0).first()
    #predictions = predictions.groupby(level=0).first()
    predictions = pd.concat([test['id'],predictions], axis=1, verify_integrity=False)
    print predictions
    return predictions
开发者ID:ap-mishra,项目名称:KTHDRelevance,代码行数:25,代码来源:chunk_SVR.py


示例11: learn

def learn(X, y):
    # do pca
    pca = PCA(n_components=6)
    pca_6 = pca.fit(X)

    print('variance ratio')
    print(pca_6.explained_variance_ratio_)
    X = pca.fit_transform(X)

    # X = np.concatenate((X_pca[:, 0].reshape(X.shape[0], 1), X_pca[:, 5].reshape(X.shape[0], 1)), axis=1)
    # do svr
    svr_rbf = SVR(kernel='rbf', C=1)
    svr_rbf.fit(X, y)
    # print(model_rbf)

    y_rbf = svr_rbf.predict(X)
    print(y_rbf)
    print(y)

    # see difference
    y_rbf = np.transpose(y_rbf)
    deviation(y, y_rbf)

    # pickle model
    with open('rbfmodel.pkl', 'wb') as f:
        pickle.dump(svr_rbf, f)

    with open('pcamodel.pkl', 'wb') as f:
        pickle.dump(pca_6, f)
开发者ID:inciboduroglu,项目名称:gradr,代码行数:29,代码来源:learn.py


示例12: train_SVM

def train_SVM(X, Y, kernel='rbf', shrinking=True,  tol=0.001, cache_size=1500, verbose=True, max_iter=-1):
	"""Assumes all irrelevant features have been removed from X and Y"""
	"""Learns several hundred SVMs"""

	clf = SVR(kernel=kernel, tol=tol, cache_size=cache_size, verbose=verbose, max_iter=max_iter)
	pipeline = Pipeline(zip([ "imputate", "vart", "scale", "svm" ], [ Imputer(), VarianceThreshold(), StandardScaler(), clf ]))
	
	param_grid = dict(svm__C=[0.1, 1, 10, 100, 1000],
										svm__gamma=[0.001, 0.01, 1, 10])

	
	grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=3)
	
	results = []

	for i in range(Y[0].shape[1]):
		Y_new = np.fromiter((x[:, i][0, 0] for x in Y), np.double)
		X_new = np.array([np.matrix(x.data).flatten().tolist() for x in X], np.double)
		#X_new = np.fromiter((np.matrix(x.data) for x in X), np.double)

		X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X_new, Y_new, test_size = 0.2)
		X_train = flatten(X_train)
		X_test = flatten(X_test)

		grid_search.fit(X_train, Y_train)
		results.append( (grid_search.best_estimator_, clf.score(X_test, Y_test)))	
		print("Best estimators (C): {0}, Score: {1}".format(grid_search.best_estimator_, clf.score(X_test, Y_test)))
	return results
开发者ID:orichardson,项目名称:mcm2016,代码行数:28,代码来源:svm.py


示例13: compute_mse

def compute_mse(regressor, horizon):
    # get wind park and corresponding target. 
    windpark = NREL().get_windpark(NREL.park_id['tehachapi'], 3, 2004, 2005)
    target = windpark.get_target()

    # use power mapping for pattern-label mapping. 
    feature_window = 3
    mapping = PowerMapping()
    X = mapping.get_features_park(windpark, feature_window, horizon)
    y = mapping.get_labels_turbine(target, feature_window, horizon)

    # train roughly for the year 2004, test for 2005.
    train_to = int(math.floor(len(X) * 0.5))
    test_to = len(X)
    train_step, test_step = 25, 25
    X_train=X[:train_to:train_step]
    y_train=y[:train_to:train_step]
    X_test=X[train_to:test_to:test_step]
    y_test=y[train_to:test_to:test_step]

    if(regressor == 'svr'):
        reg = SVR(kernel='rbf', epsilon=0.1, C = 100.0,\
                gamma = 0.0001).fit(X_train,y_train)
        mse = mean_squared_error(reg.predict(X_test),y_test)
    elif(regressor == 'knn'):
        reg = KNeighborsRegressor(10, 'uniform').fit(X_train,y_train)
        mse = mean_squared_error(reg.predict(X_test),y_test)
    return mse
开发者ID:DeeplearningMachineLearning,项目名称:windml,代码行数:28,代码来源:forecast_horizon.py


示例14: __init__

class SVRegression:
    def __init__(self, kernel_value, c_value, iter_value):
        self.kernel = kernel_value
        self.c = c_value
        self.iter = iter_value
        self.svr_lin = None
    
    def fit_predict(self, x_train, y_train, x_test):
        self.svr_lin = SVR(kernel=self.kernel, C=self.c, max_iter=self.iter)
        y_lin = self.svr_lin.fit(x_train, y_train).predict(x_test)
        return y_lin
    
    def computeC(self, x_train):
        print "ARRAY ", type(x_train)
        print x_train
        array = x_train.todense()
        print "ARRAY ", type(array)
        print array
        result = array.sum(axis=1, dtype='float')
        result = pow(result, 2)
        total = result.sum(axis=0, dtype='float')
        rows, columns = x_train.shape
        total = float(total)/float(rows)
        total = pow(total,-1)
        print "C", total
        self.c = total

    def computeAccuracy(self, x, y):
        return self.svr_lin.score(x, y)
开发者ID:CU-Boulder-Course,项目名称:ml-final-project,代码行数:29,代码来源:regression.py


示例15: getCharacteristicSignal

def getCharacteristicSignal(normedDays, phase, period, plotAxis=False):
    series = pandas.Series()
    for day in normedDays:
        series = series.append(day)
    '''Shift the times to give relative time of day'''
    t0 = array(series.index, dtype=float)
    t0 = (t0 - phase) % period
    t0 = array([t0]).T
    
    '''Shift the array to fit the edges'''
    tExt = array([array([t0-period,t0,t0+period]).flatten()]).T
    seriesExt = numpy.array([array(series),array(series),
                             array(series)]).flatten()
    
    '''Fit the model'''
    svr_rbf = SVR(kernel='rbf', C=1e4, gamma=.03, epsilon=.01)
    y_rbf = svr_rbf.fit(tExt, seriesExt)
    
    '''Predict a new characteristic signal'''
    t1 = array([arange(0,period, period/100.)]).T
    signal = y_rbf.predict(t1)
    
    if plotAxis:
        plotAxis.plot(t1, signal)
        colors = ['b','g','r','c']
        for i,day in enumerate(normedDays):
            timesAdjusted = array(normedDays[i].index,dtype=float)
            timesAdjusted = (timesAdjusted - phase) % period
            plotAxis.plot(timesAdjusted, day, 'o', label=str(i), 
                          color=colors[i])
        plotAxis.set_title('Characteristic Signal')
        plotAxis.legend(loc='best')
        plotAxis.set_xbound(0,period)
        plotAxis.set_ybound(-1.1,1.1)
    return signal
开发者ID:theandygross,项目名称:Luc,代码行数:35,代码来源:LuciferasePlots.py


示例16: train_svm

def train_svm(train_file, avg={}):
    test_X, test_Y, weight = load_data(train_file, avg)
    svr = SVR(kernel='rbf', C=100, gamma=1, verbose=True, cache_size=1024)
    print("start train")
    svr.fit(test_X, test_Y)
    print("train finish")
    return svr
开发者ID:modkzs,项目名称:regression-predict,代码行数:7,代码来源:model_time_series.py


示例17: svr

    def svr(self, X, y):
        """ Train support vector regression model

        Parameters
        ----------
        X : numpy ndarray with numeric values
            Array containing input parameters
            for the model. Model will try to
            learn the output y[i] in terms of
            inputs X[i]

        y : columnar numpy array with numeric values
            Array containing single column of
            output values. Entry at y[i] corresponds
            to value of the underlying experiment
            for input parameters X[i]

        Returns
        -------
        result : model
                Model learnt from incoming input
                inputs and outputs

        """
        clf = SVR(C=1.0, epsilon=0.2)
        clf.fit(X, y)
        return clf
开发者ID:JuergenNeubauer,项目名称:pygotham,代码行数:27,代码来源:ml.py


示例18: Sand_SVR

def Sand_SVR(X_train, Y_train, X_test, Y_test, cv_iterator):
    
    #===========================================================================
    # param_grid = {'C':[100,500,1000, 5000, 10000, 100000],
    #               'epsilon':[0.075,0.1, 0.125]
    #               }
    #  
    # svr = SVR(cache_size = 1000, random_state=42)
    # search = GridSearchCV(svr, param_grid, scoring="mean_squared_error", cv=cv_iterator)
    #===========================================================================
    #search.fit(X_train, Y_train["Sand"])
    #search.grid_scores_
    
    #svr = search.best_estimator_ 
    #svr.fit(X_train, Y_train["SAND"])
    
    #test = cross_val_score(svr, X_train.astype('float64'), Y_train["Ca"].astype('float64'), scoring="mean_squared_error", cv=cv_iterator)
    
    svr = SVR(C=10000)
    svr.fit(X_train, Y_train["Sand"])
    
    yhat_svr = svr.predict(X_test)
    test_error = math.sqrt(mean_squared_error(Y_test["Sand"], yhat_svr))
    
    return svr, test_error
开发者ID:pkravik,项目名称:kaggle,代码行数:25,代码来源:sand_models.py


示例19: train_learning_model_svm

def train_learning_model_svm(df):
    X_all, y_all = preprocess_data(df)
    X_train, X_test, y_train, y_test = split_data(X_all, y_all)

    regressor = SVR()
    regressor.fit(X_train, y_train)
    calculate_results(regressor, X_train, X_test, y_train, y_test)
开发者ID:longnd84,项目名称:machine-learning,代码行数:7,代码来源:trader_regressor.py


示例20: CaSVRModel

def CaSVRModel(X_train, Y_train, X_test, Y_test, cv_iterator):
#     
#     param_grid = {'C':[10000],
#                    'epsilon':[0.001, 0.01, 0.05, 0.1, 0.15, 1]
#                    }
#       
#     svr = SVR(random_state=42, cache_size=1000, verbose=2)
#     search = GridSearchCV(svr, param_grid, scoring="mean_squared_error", n_jobs= 1, iid=True, cv=cv_iterator)
#     search.fit(X_train, Y_train["Ca"])
#     #search.grid_scores_
#       
#     model = search.best_estimator_

    #scaler = StandardScaler()

    model = SVR(C=10000, epsilon = 0.01, cache_size=1000)
    model.fit(X_train, Y_train["Ca"])
    #model.fit(X_train, Y_train["Ca"])
    
    #model.fit(X_train, Y_train["Ca"])
    
    #test = cross_val_score(svr, X_train.astype('float64'), Y_train["Ca"].astype('float64'), scoring="mean_squared_error", cv=cv_iterator)
    
    yhat_svr = model.predict(X_test)
    test_error = math.sqrt(mean_squared_error(Y_test["Ca"], yhat_svr))
    
    return model, test_error
开发者ID:pkravik,项目名称:kaggle,代码行数:27,代码来源:ca_models.py



注:本文中的sklearn.svm.SVR类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tree.export_graphviz函数代码示例发布时间:2022-05-27
下一篇:
Python svm.SVC类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap