本文整理汇总了Python中sklearn.utils.multiclass.type_of_target函数的典型用法代码示例。如果您正苦于以下问题:Python type_of_target函数的具体用法?Python type_of_target怎么用?Python type_of_target使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了type_of_target函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_type_of_target
def test_type_of_target():
for group, group_examples in EXAMPLES.items():
for example in group_examples:
assert_equal(type_of_target(example), group,
msg=('type_of_target(%r) should be %r, got %r'
% (example, group, type_of_target(example))))
for example in NON_ARRAY_LIKE_EXAMPLES:
msg_regex = r'Expected array-like \(array or non-string sequence\).*'
assert_raises_regex(ValueError, msg_regex, type_of_target, example)
for example in MULTILABEL_SEQUENCES:
msg = ('You appear to be using a legacy multi-label data '
'representation. Sequence of sequences are no longer supported;'
' use a binary array or sparse matrix instead.')
assert_raises_regex(ValueError, msg, type_of_target, example)
try:
from pandas import SparseSeries
except ImportError:
raise SkipTest("Pandas not found")
y = SparseSeries([1, 0, 0, 1, 0])
msg = "y cannot be class 'SparseSeries'."
assert_raises_regex(ValueError, msg, type_of_target, y)
开发者ID:hmshan,项目名称:scikit-learn,代码行数:25,代码来源:test_multiclass.py
示例2: fit
def fit(self, X, y):
"""Find the classes statistics before to perform sampling.
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns
-------
self : object,
Return self.
"""
super(BaseMulticlassSampler, self).fit(X, y)
# Check that the target type is either binary or multiclass
if not (type_of_target(y) == 'binary' or
type_of_target(y) == 'multiclass'):
warnings.simplefilter('always', UserWarning)
warnings.warn('The target type should be binary or multiclass.')
return self
开发者ID:kellyhennigan,项目名称:cueexp_scripts,代码行数:27,代码来源:base.py
示例3: test_type_of_target
def test_type_of_target():
for group, group_examples in iteritems(EXAMPLES):
for example in group_examples:
assert_equal(type_of_target(example), group,
msg='type_of_target(%r) should be %r, got %r'
% (example, group, type_of_target(example)))
for example in NON_ARRAY_LIKE_EXAMPLES:
assert_raises(ValueError, type_of_target, example)
开发者ID:Aharobot,项目名称:scikit-learn,代码行数:9,代码来源:test_multiclass.py
示例4: _check_targets_hmc
def _check_targets_hmc(y_true, y_pred):
check_consistent_length(y_true, y_pred)
y_type = set([type_of_target(y_true), type_of_target(y_pred)])
if y_type == set(["binary", "multiclass"]):
y_type = set(["multiclass"])
if y_type != set(["multiclass"]):
raise ValueError("{0} is not supported".format(y_type))
y_true = column_or_1d(y_true)
y_pred = column_or_1d(y_pred)
return y_true, y_pred
开发者ID:davidwarshaw,项目名称:hmc,代码行数:10,代码来源:metrics.py
示例5: _check_clf_targets
def _check_clf_targets(y_true, y_pred):
"""Check that y_true and y_pred belong to the same classification task
This converts multiclass or binary types to a common shape, and raises a
ValueError for a mix of multilabel and multiclass targets, a mix of
multilabel formats, for the presence of continuous-valued or multioutput
targets, or for targets of different lengths.
Column vectors are squeezed to 1d.
Parameters
----------
y_true : array-like,
y_pred : array-like
Returns
-------
type_true : one of {'multilabel-indicator', 'multilabel-sequences', \
'multiclass', 'binary'}
The type of the true target data, as output by
``utils.multiclass.type_of_target``
y_true : array or indicator matrix or sequence of sequences
y_pred : array or indicator matrix or sequence of sequences
"""
y_true, y_pred = check_arrays(y_true, y_pred, allow_lists=True)
type_true = type_of_target(y_true)
type_pred = type_of_target(y_pred)
y_type = set([type_true, type_pred])
if y_type == set(["binary", "multiclass"]):
y_type = set(["multiclass"])
if len(y_type) > 1:
raise ValueError("Can't handle mix of {0} and {1}" "".format(type_true, type_pred))
# We can't have more than one value on y_type => The set is no more needed
y_type = y_type.pop()
# No metrics support "multiclass-multioutput" format
if y_type not in ["binary", "multiclass", "multilabel-indicator", "multilabel-sequences"]:
raise ValueError("{0} is not supported".format(y_type))
if y_type in ["binary", "multiclass"]:
y_true = column_or_1d(y_true)
y_pred = column_or_1d(y_pred)
return y_type, y_true, y_pred
开发者ID:DjalelBBZ,项目名称:SOS14_practical_session,代码行数:51,代码来源:SOS_tools.py
示例6: _posibility
def _posibility(self, x, tag, event=1):
"""计算触发概率
Parameters:
----------
x (Sequence): - 离散特征序列
tag (Sequence): - 用于训练的标签序列
event (any): - True指代的触发事件
Returns:
----------
Dict[str,Tuple[rate_T, rate_F]]: - 训练好后的好坏触发概率
"""
if type_of_target(tag) not in ['binary']:
raise AttributeError("tag must be a binary array")
#if type_of_target(x) in ['continuous']:
# raise AttributeError("input array must not continuous")
tag = np.array(tag)
x = np.array(x)
event_total = (tag == event).sum()
non_event_total = tag.shape[-1] - event_total
x_labels = pd.unique(x[pd.notnull(x)])
pos_dic = {}
for x1 in x_labels:
# 当 x1 是nan时,y1 也为空
y1 = tag[np.where(x == x1)[0]]
event_count = (y1 == event).sum()
non_event_count = y1.shape[-1] - event_count
rate_event = 1.0 * event_count / event_total
rate_non_event = 1.0 * non_event_count / non_event_total
pos_dic[x1] = (rate_event, rate_non_event)
return pos_dic
开发者ID:gasongjian,项目名称:reportgen,代码行数:30,代码来源:preprocessing.py
示例7: check_target_type
def check_target_type(y, indicate_one_vs_all=False):
"""Check the target types to be conform to the current samplers.
The current samplers should be compatible with ``'binary'``,
``'multilabel-indicator'`` and ``'multiclass'`` targets only.
Parameters
----------
y : ndarray,
The array containing the target.
indicate_one_vs_all : bool, optional
Either to indicate if the targets are encoded in a one-vs-all fashion.
Returns
-------
y : ndarray,
The returned target.
is_one_vs_all : bool, optional
Indicate if the target was originally encoded in a one-vs-all fashion.
Only returned if ``indicate_multilabel=True``.
"""
type_y = type_of_target(y)
if type_y == 'multilabel-indicator':
if np.any(y.sum(axis=1) > 1):
raise ValueError(
"When 'y' corresponds to '{}', 'y' should encode the "
"multiclass (a single 1 by row).".format(type_y))
y = y.argmax(axis=1)
return (y, type_y == 'multilabel-indicator') if indicate_one_vs_all else y
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:33,代码来源:_validation.py
示例8: fit
def fit(self, X, y):
"""Find the classes statistics before to perform sampling.
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns
-------
self : object,
Return self.
"""
super(BaseBinarySampler, self).fit(X, y)
# Check that the target type is binary
if not type_of_target(y) == 'binary':
warnings.warn('The target type should be binary.')
return self
开发者ID:dvro,项目名称:imbalanced-learn,代码行数:25,代码来源:base.py
示例9: test_type_of_target
def test_type_of_target():
for group, group_examples in iteritems(EXAMPLES):
for example in group_examples:
assert_equal(type_of_target(example), group,
msg=('type_of_target(%r) should be %r, got %r'
% (example, group, type_of_target(example))))
for example in NON_ARRAY_LIKE_EXAMPLES:
msg_regex = 'Expected array-like \(array or non-string sequence\).*'
assert_raises_regex(ValueError, msg_regex, type_of_target, example)
for example in MULTILABEL_SEQUENCES:
msg = ('You appear to be using a legacy multi-label data '
'representation. Sequence of sequences are no longer supported;'
' use a binary array or sparse matrix instead.')
assert_raises_regex(ValueError, msg, type_of_target, example)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:16,代码来源:test_multiclass.py
示例10: _sampling_strategy_float
def _sampling_strategy_float(sampling_strategy, y, sampling_type):
"""Take a proportion of the majority (over-sampling) or minority
(under-sampling) class in binary classification."""
type_y = type_of_target(y)
if type_y != 'binary':
raise ValueError(
'"sampling_strategy" can be a float only when the type '
'of target is binary. For multi-class, use a dict.')
target_stats = Counter(y)
if sampling_type == 'over-sampling':
n_sample_majority = max(target_stats.values())
class_majority = max(target_stats, key=target_stats.get)
sampling_strategy_ = {
key: int(n_sample_majority * sampling_strategy - value)
for (key, value) in target_stats.items() if key != class_majority
}
elif (sampling_type == 'under-sampling'):
n_sample_minority = min(target_stats.values())
class_minority = min(target_stats, key=target_stats.get)
sampling_strategy_ = {
key: int(n_sample_minority / sampling_strategy)
for (key, value) in target_stats.items() if key != class_minority
}
else:
raise ValueError("'clean-sampling' methods do let the user "
"specify the sampling ratio.")
return sampling_strategy_
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:27,代码来源:_validation.py
示例11: cross_val_score_one_vs_all_per_class
def cross_val_score_one_vs_all_per_class(estimator, X, y=None, *args, **kargs):
y_type = type_of_target(y)
positive_example_amount = y.sum(axis=0)
error = ""
if (positive_example_amount < kargs["cv"]).any():
error = (
str((positive_example_amount < kargs["cv"]).sum())
+ " : too little examples for "
+ str(np.where(positive_example_amount < kargs["cv"]))
+ str(positive_example_amount[np.where(positive_example_amount < kargs["cv"])])
)
if (positive_example_amount > y.shape[0] - kargs["cv"]).any():
error += (
str((positive_example_amount > y.shape[0] - kargs["cv"]).sum())
+ " : too many examples for "
+ str(np.where(positive_example_amount > y.shape[0] - kargs["cv"]))
+ str(positive_example_amount[np.where(positive_example_amount > y.shape[0] - kargs["cv"])])
)
# if error:
# raise Exception(error)
if y_type.startswith("multilabel") and isinstance(estimator, OneVsRestClassifier):
res = []
for yy in y.transpose():
res.append(_cross_val_score(deepcopy(estimator.estimator), X, yy, *args, **kargs))
import pdb
pdb.set_trace()
else:
res = _cross_val_score(estimator, X, y, *args, **kargs)
return np.array(list(res))
开发者ID:otadmor,项目名称:Open-Knesset,代码行数:30,代码来源:tags_autolearn_play.py
示例12: check_target_binary
def check_target_binary(self, y):
'''
check if the target variable is binary, raise error if not.
:param y:
:return:
'''
y_type = type_of_target(y)
if y_type not in ['binary']:
raise ValueError('Label type must be binary')
开发者ID:iiicherry,项目名称:information_value,代码行数:9,代码来源:information_value.py
示例13: fit
def fit(self, X, y):
"""Fit MLP Classifier according to X, y
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples] or [n_samples, n_classes]
Target values. It determines the problem type.
*binary*
If y is a vector of integers with two unique values.
*multiclass*
If y is a vector of integers with three or more values
or if y is a two-dimensional array of integers and there exists only
one non-zero element per row.
*multiclass-multioutput*
If y is two-dimensional array of integers with two unique values
and there exists more than one non-zero element per row.
*continuous*
If y is a vector of floats.
*continuous-multioutput*
If y is a two-dimensional array of floats.
Returns
-------
self : object
Returns self.
"""
X, = check_arrays(X, sparse_format='dense')
n_samples, self.input_size_ = X.shape
y = np.atleast_1d(y)
self.type_of_target_ = type_of_target(y)
if self.verbose > 0:
print("The inferred type of y is %s" % self.type_of_target_)
if self.type_of_y != None:
if self.type_of_y != self.type_of_target_:
print("Passed type of y is %s, inferred type is %s"
% (self.type_of_y, self.type_of_target_))
raise("derp")
self.check_type_implemented()
y = self._get_output(y)
X, y = self._scale(X, y)
self._inst_mlp()
self._fit_mlp(X, y)
if self.dropout and self.type_of_target_ in ['continuous', 'continuous-multioutput']:
self._lineregress(X, y)
开发者ID:JakeMick,项目名称:graymatter,代码行数:57,代码来源:mlp.py
示例14: check_samplers_multiclass_ova
def check_samplers_multiclass_ova(name, Sampler):
# Check that multiclass target lead to the same results than OVA encoding
X, y = make_classification(n_samples=1000, n_classes=3, n_informative=4,
weights=[0.2, 0.3, 0.5], random_state=0)
y_ova = label_binarize(y, np.unique(y))
sampler = Sampler()
# FIXME: in 0.6 set the random_state for all
if name not in DONT_HAVE_RANDOM_STATE:
set_random_state(sampler)
X_res, y_res = sampler.fit_resample(X, y)
X_res_ova, y_res_ova = sampler.fit_resample(X, y_ova)
assert_allclose(X_res, X_res_ova)
if issubclass(Sampler, BaseEnsembleSampler):
for batch_y, batch_y_ova in zip(y_res, y_res_ova):
assert type_of_target(batch_y_ova) == type_of_target(y_ova)
assert_allclose(batch_y, batch_y_ova.argmax(axis=1))
else:
assert type_of_target(y_res_ova) == type_of_target(y_ova)
assert_allclose(y_res, y_res_ova.argmax(axis=1))
开发者ID:chkoar,项目名称:imbalanced-learn,代码行数:19,代码来源:estimator_checks.py
示例15: _check_cv
def _check_cv(cv=3, y=None, classifier=False, **kwargs):
"""Input checker utility for building a cross-validator.
Parameters
----------
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if classifier is True and ``y`` is either
binary or multiclass, :class:`StratifiedKFold` is used. In all other
cases, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
y : array-like, optional
The target variable for supervised learning problems.
classifier : boolean, optional, default False
Whether the task is a classification task, in which case
stratified KFold will be used.
kwargs : dict
Other parameters for StratifiedShuffleSplit or ShuffleSplit.
Returns
-------
checked_cv : a cross-validator instance.
The return value is a cross-validator which generates the train/test
splits via the ``split`` method.
"""
if cv is None:
cv = kwargs.pop('n_splits', 0) or 10
if isinstance(cv, numbers.Integral):
if (classifier and (y is not None) and
(type_of_target(y) in ('binary', 'multiclass'))):
return StratifiedShuffleSplit(cv, **kwargs)
else:
return ShuffleSplit(cv, **kwargs)
if not hasattr(cv, 'split') or isinstance(cv, str):
if not isinstance(cv, Iterable) or isinstance(cv, str):
raise ValueError("Expected cv as an integer, cross-validation "
"object (from sklearn.model_selection) "
"or an iterable. Got %s." % cv)
return _CVIterableWrapper(cv)
return cv # New style cv objects are passed without any modification
开发者ID:slipguru,项目名称:palladio,代码行数:54,代码来源:model_assessment.py
示例16: check_averaging
def check_averaging(name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score):
is_multilabel = type_of_target(y_true).startswith("multilabel")
metric = ALL_METRICS[name]
if name in METRICS_WITH_AVERAGING:
_check_averaging(metric, y_true, y_pred, y_true_binarize, y_pred_binarize, is_multilabel)
elif name in THRESHOLDED_METRICS_WITH_AVERAGING:
_check_averaging(metric, y_true, y_score, y_true_binarize, y_score, is_multilabel)
else:
raise ValueError("Metric is not recorded as having an average option")
开发者ID:r-mart,项目名称:scikit-learn,代码行数:11,代码来源:test_common.py
示例17: _validate_target
def _validate_target(self, y):
"""
Raises a value error if the target is not a classification target.
"""
# Ignore None values
if y is None:
return
y_type = type_of_target(y)
if y_type not in ("binary", "multiclass"):
raise YellowbrickValueError((
"'{}' target type not supported, only binary and multiclass"
).format(y_type))
开发者ID:DistrictDataLabs,项目名称:yellowbrick,代码行数:13,代码来源:class_balance.py
示例18: woe
def woe(X,y,event=1):
res_woe = []
iv_dict = {}
for feature in X.columns:
x = X[feature].values
# 判断x 是否为连续变量,如果是,就要进行离散化
if type_of_target(x) == 'continuous':
x = discrete(x)
woe_dict,iv = woe_single_x(x, y, feature, event)
iv_dict[feature] = iv
res_woe.append(woe_dict)
return iv_dict
开发者ID:gdzsgcj,项目名称:mygit,代码行数:13,代码来源:feature_engineeing.py
示例19: check_target_type
def check_target_type(y):
"""Check the target types to be conform to the current samplers.
The current samplers should be compatible with ``'binary'`` and
``'multiclass'`` targets only.
Parameters
----------
y : ndarray,
The array containing the target
Returns
-------
y : ndarray,
The returned target.
"""
if type_of_target(y) not in TARGET_KIND:
# FIXME: perfectly we should raise an error but the sklearn API does
# not allow for it
warnings.warn("'y' should be of types {} only. Got {} instead.".format(
TARGET_KIND, type_of_target(y)))
return y
开发者ID:glemaitre,项目名称:imbalanced-learn,代码行数:23,代码来源:validation.py
示例20: check_target_type
def check_target_type(y, indicate_one_vs_all=False):
"""Check the target types to be conform to the current samplers.
The current samplers should be compatible with ``'binary'``,
``'multilabel-indicator'`` and ``'multiclass'`` targets only.
Parameters
----------
y : ndarray,
The array containing the target.
indicate_one_vs_all : bool, optional
Either to indicate if the targets are encoded in a one-vs-all fashion.
Returns
-------
y : ndarray,
The returned target.
is_one_vs_all : bool, optional
Indicate if the target was originally encoded in a one-vs-all fashion.
Only returned if ``indicate_multilabel=True``.
"""
type_y = type_of_target(y)
if type_y not in TARGET_KIND:
# FIXME: perfectly we should raise an error but the sklearn API does
# not allow for it
warnings.warn("'y' should be of types {} only. Got {} instead.".format(
TARGET_KIND, type_of_target(y)))
if indicate_one_vs_all:
return (y.argmax(axis=1) if type_y == 'multilabel-indicator' else y,
type_y == 'multilabel-indicator')
else:
return y.argmax(axis=1) if type_y == 'multilabel-indicator' else y
开发者ID:bodycat,项目名称:imbalanced-learn,代码行数:36,代码来源:_validation.py
注:本文中的sklearn.utils.multiclass.type_of_target函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论