• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python testing.assert_in函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sklearn.utils.testing.assert_in函数的典型用法代码示例。如果您正苦于以下问题:Python assert_in函数的具体用法?Python assert_in怎么用?Python assert_in使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_in函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_root_import_all_completeness

def test_root_import_all_completeness():
    EXCEPTIONS = ('utils', 'tests', 'base', 'setup')
    for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__,
                                               onerror=lambda _: None):
        if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS:
            continue
        assert_in(modname, sklearn.__all__)
开发者ID:MartinThoma,项目名称:scikit-learn,代码行数:7,代码来源:test_common.py


示例2: test_dump

def test_dump():
    Xs, y = load_svmlight_file(datafile)
    Xd = Xs.toarray()

    for X in (Xs, Xd):
        for zero_based in (True, False):
            for dtype in [np.float32, np.float64]:
                f = BytesIO()
                dump_svmlight_file(X.astype(dtype), y, f, zero_based=zero_based)
                f.seek(0)

                comment = f.readline()
                assert_in("scikit-learn %s" % sklearn.__version__, comment)
                comment = f.readline()
                assert_in(["one", "zero"][zero_based] + "-based", comment)

                X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based)
                assert_equal(X2.dtype, dtype)
                if dtype == np.float32:
                    assert_array_almost_equal(
                        # allow a rounding error at the last decimal place
                        Xd.astype(dtype),
                        X2.toarray(),
                        4,
                    )
                else:
                    assert_array_almost_equal(
                        # allow a rounding error at the last decimal place
                        Xd.astype(dtype),
                        X2.toarray(),
                        15,
                    )
                assert_array_equal(y, y2)
开发者ID:kkuunnddaann,项目名称:scikit-learn,代码行数:33,代码来源:test_svmlight_format.py


示例3: test_dump

def test_dump():
    Xs, y = load_svmlight_file(datafile)
    Xd = Xs.toarray()

    for X in (Xs, Xd):
        for zero_based in (True, False):
            for dtype in [np.float32, np.float64]:
                f = BytesIO()
                # we need to pass a comment to get the version info in;
                # LibSVM doesn't grok comments so they're not put in by
                # default anymore.
                dump_svmlight_file(X.astype(dtype), y, f, comment="test",
                                   zero_based=zero_based)
                f.seek(0)

                comment = f.readline()
                assert_in("scikit-learn %s" % sklearn.__version__, comment)
                comment = f.readline()
                assert_in(["one", "zero"][zero_based] + "-based", comment)

                X2, y2 = load_svmlight_file(f, dtype=dtype,
                                            zero_based=zero_based)
                assert_equal(X2.dtype, dtype)
                if dtype == np.float32:
                    assert_array_almost_equal(
                        # allow a rounding error at the last decimal place
                        Xd.astype(dtype), X2.toarray(), 4)
                else:
                    assert_array_almost_equal(
                        # allow a rounding error at the last decimal place
                        Xd.astype(dtype), X2.toarray(), 15)
                assert_array_equal(y, y2)
开发者ID:yzhy,项目名称:scikit-learn,代码行数:32,代码来源:test_svmlight_format.py


示例4: test_big_input

def test_big_input():
    """Test if the warning for too large inputs is appropriate."""
    X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1)
    clf = DecisionTreeClassifier()
    try:
        clf.fit(X, [0, 1, 0, 1])
    except ValueError as e:
        assert_in("float32", str(e))
开发者ID:Carol-Hu,项目名称:scikit-learn,代码行数:8,代码来源:test_tree.py


示例5: test_sparse_precomputed

def test_sparse_precomputed():
    clf = svm.SVC(kernel='precomputed')
    sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]])
    try:
        clf.fit(sparse_gram, [0, 1])
        assert not "reached"
    except TypeError as e:
        assert_in("Sparse precomputed", str(e))
开发者ID:abhisg,项目名称:scikit-learn,代码行数:8,代码来源:test_svm.py


示例6: test_dump

def test_dump():
    X_sparse, y_dense = load_svmlight_file(datafile)
    X_dense = X_sparse.toarray()
    y_sparse = sp.csr_matrix(y_dense)

    # slicing a csr_matrix can unsort its .indices, so test that we sort
    # those correctly
    X_sliced = X_sparse[np.arange(X_sparse.shape[0])]
    y_sliced = y_sparse[np.arange(y_sparse.shape[0])]

    for X in (X_sparse, X_dense, X_sliced):
        for y in (y_sparse, y_dense, y_sliced):
            for zero_based in (True, False):
                for dtype in [np.float32, np.float64, np.int32]:
                    f = BytesIO()
                    # we need to pass a comment to get the version info in;
                    # LibSVM doesn't grok comments so they're not put in by
                    # default anymore.

                    if (sp.issparse(y) and y.shape[0] == 1):
                        # make sure y's shape is: (n_samples, n_labels)
                        # when it is sparse
                        y = y.T

                    dump_svmlight_file(X.astype(dtype), y, f, comment="test",
                                       zero_based=zero_based)
                    f.seek(0)

                    comment = f.readline()
                    comment = str(comment, "utf-8")

                    assert_in("scikit-learn %s" % sklearn.__version__, comment)

                    comment = f.readline()
                    comment = str(comment, "utf-8")

                    assert_in(["one", "zero"][zero_based] + "-based", comment)

                    X2, y2 = load_svmlight_file(f, dtype=dtype,
                                                zero_based=zero_based)
                    assert_equal(X2.dtype, dtype)
                    assert_array_equal(X2.sorted_indices().indices, X2.indices)

                    X2_dense = X2.toarray()

                    if dtype == np.float32:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(
                            X_dense.astype(dtype), X2_dense, 4)
                        assert_array_almost_equal(
                            y_dense.astype(dtype), y2, 4)
                    else:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(
                            X_dense.astype(dtype), X2_dense, 15)
                        assert_array_almost_equal(
                            y_dense.astype(dtype), y2, 15)
开发者ID:mikebotazzo,项目名称:scikit-learn,代码行数:57,代码来源:test_svmlight_format.py


示例7: test_boundaries

def test_boundaries():
    # ensure min_samples is inclusive of core point
    core, _ = dbscan([[0], [1]], eps=2, min_samples=2)
    assert_in(0, core)
    # ensure eps is inclusive of circumference
    core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2)
    assert_in(0, core)
    core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2)
    assert_not_in(0, core)
开发者ID:jorgedavid22,项目名称:scikit-learn,代码行数:9,代码来源:test_dbscan.py


示例8: check_parameters_default_constructible

def check_parameters_default_constructible(name, Estimator):
    classifier = LDA()
    # test default-constructibility
    # get rid of deprecation warnings
    with warnings.catch_warnings(record=True):
        if name in META_ESTIMATORS:
            estimator = Estimator(classifier)
        else:
            estimator = Estimator()
        # test cloning
        clone(estimator)
        # test __repr__
        repr(estimator)
        # test that set_params returns self
        assert_true(estimator.set_params() is estimator)

        # test if init does nothing but set parameters
        # this is important for grid_search etc.
        # We get the default parameters from init and then
        # compare these against the actual values of the attributes.

        # this comes from getattr. Gets rid of deprecation decorator.
        init = getattr(estimator.__init__, 'deprecated_original',
                       estimator.__init__)
        try:
            args, varargs, kws, defaults = inspect.getargspec(init)
        except TypeError:
            # init is not a python function.
            # true for mixins
            return
        params = estimator.get_params()
        if name in META_ESTIMATORS:
            # they need a non-default argument
            args = args[2:]
        else:
            args = args[1:]
        if args:
            # non-empty list
            assert_equal(len(args), len(defaults))
        else:
            return
        for arg, default in zip(args, defaults):
            assert_in(type(default), [str, int, float, bool, tuple, type(None),
                                      np.float64, types.FunctionType, Memory])
            if arg not in params.keys():
                # deprecated parameter, not in get_params
                assert_true(default is None)
                continue

            if isinstance(params[arg], np.ndarray):
                assert_array_equal(params[arg], default)
            else:
                assert_equal(params[arg], default)
开发者ID:Afey,项目名称:scikit-learn,代码行数:53,代码来源:estimator_checks.py


示例9: test_dump

def test_dump():
    Xs, y = load_svmlight_file(datafile)
    Xd = Xs.toarray()

    # slicing a csr_matrix can unsort its .indices, so test that we sort
    # those correctly
    Xsliced = Xs[np.arange(Xs.shape[0])]

    for X in (Xs, Xd, Xsliced):
        for zero_based in (True, False):
            for dtype in [np.float32, np.float64, np.int32]:
                f = BytesIO()
                # we need to pass a comment to get the version info in;
                # LibSVM doesn't grok comments so they're not put in by
                # default anymore.
                dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based)
                f.seek(0)

                comment = f.readline()
                try:
                    comment = str(comment, "utf-8")
                except TypeError:  # fails in Python 2.x
                    pass

                assert_in("scikit-learn %s" % sklearn.__version__, comment)

                comment = f.readline()
                try:
                    comment = str(comment, "utf-8")
                except TypeError:  # fails in Python 2.x
                    pass

                assert_in(["one", "zero"][zero_based] + "-based", comment)

                X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based)
                assert_equal(X2.dtype, dtype)
                assert_array_equal(X2.sorted_indices().indices, X2.indices)
                if dtype == np.float32:
                    assert_array_almost_equal(
                        # allow a rounding error at the last decimal place
                        Xd.astype(dtype),
                        X2.toarray(),
                        4,
                    )
                else:
                    assert_array_almost_equal(
                        # allow a rounding error at the last decimal place
                        Xd.astype(dtype),
                        X2.toarray(),
                        15,
                    )
                assert_array_equal(y, y2)
开发者ID:albertotb,项目名称:scikit-learn,代码行数:52,代码来源:test_svmlight_format.py


示例10: test_friedman_mse_in_graphviz

def test_friedman_mse_in_graphviz():
    clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0)
    clf.fit(X, y)
    dot_data = StringIO()
    export_graphviz(clf, out_file=dot_data)

    clf = GradientBoostingClassifier(n_estimators=2, random_state=0)
    clf.fit(X, y)
    for estimator in clf.estimators_:
        export_graphviz(estimator[0], out_file=dot_data)

    for finding in finditer(r"\[.*?samples.*?\]", dot_data.getvalue()):
        assert_in("friedman_mse", finding.group())
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:13,代码来源:test_export.py


示例11: test_countvectorizer_empty_vocabulary

def test_countvectorizer_empty_vocabulary():
    try:
        CountVectorizer(vocabulary=[])
        assert False, "we shouldn't get here"
    except ValueError as e:
        assert_in("empty vocabulary", str(e).lower())

    try:
        v = CountVectorizer(max_df=1.0, stop_words="english")
        # fit on stopwords only
        v.fit(["to be or not to be", "and me too", "and so do you"])
        assert False, "we shouldn't get here"
    except ValueError as e:
        assert_in("empty vocabulary", str(e).lower())
开发者ID:BloodD,项目名称:scikit-learn,代码行数:14,代码来源:test_text.py


示例12: test_download

def test_download():
    """Test that fetch_mldata is able to download and cache a data set."""

    _urllib2_ref = datasets.mldata.urllib2
    datasets.mldata.urllib2 = mock_urllib2({'mock':
                                            {'label': sp.ones((150,)),
                                             'data': sp.ones((150, 4))}})
    try:
        mock = fetch_mldata('mock', data_home=tmpdir)
        assert_in(mock, in_=['COL_NAMES', 'DESCR', 'target', 'data'])

        assert_equal(mock.target.shape, (150,))
        assert_equal(mock.data.shape, (150, 4))

        assert_raises(datasets.mldata.urllib2.HTTPError,
                      fetch_mldata, 'not_existing_name')
    finally:
        datasets.mldata.urllib2 = _urllib2_ref
开发者ID:QuarkSpark,项目名称:scikit-learn,代码行数:18,代码来源:test_mldata.py


示例13: test_n_iter_without_progress

def test_n_iter_without_progress():
    # Use a dummy negative n_iter_without_progress and check output on stdout
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    tsne = TSNE(n_iter_without_progress=-1, verbose=2,
                random_state=1, method='exact')

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        tsne.fit_transform(X)
    finally:
        out = sys.stdout.getvalue()
        sys.stdout.close()
        sys.stdout = old_stdout

    # The output needs to contain the value of n_iter_without_progress
    assert_in("did not make any progress during the "
              "last -1 episodes. Finished.", out)
开发者ID:AlexandreAbraham,项目名称:scikit-learn,代码行数:19,代码来源:test_t_sne.py


示例14: test_n_iter_without_progress

def test_n_iter_without_progress():
    # Make sure that the parameter n_iter_without_progress is used correctly
    random_state = check_random_state(0)
    X = random_state.randn(100, 2)
    tsne = TSNE(n_iter_without_progress=2, verbose=2,
                random_state=0, method='exact')

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        tsne.fit_transform(X)
    finally:
        out = sys.stdout.getvalue()
        sys.stdout.close()
        sys.stdout = old_stdout

    # The output needs to contain the value of n_iter_without_progress
    assert_in("did not make any progress during the "
              "last 2 episodes. Finished.", out)
开发者ID:ManrajGrover,项目名称:scikit-learn,代码行数:19,代码来源:test_t_sne.py


示例15: test_fetch_one_column

def test_fetch_one_column():
    _urllib2_ref = datasets.mldata.urllib2
    try:
        dataname = 'onecol'
        # create fake data set in cache
        x = sp.arange(6).reshape(2, 3)
        datasets.mldata.urllib2 = mock_urllib2({dataname: {'x': x}})

        dset = fetch_mldata(dataname, data_home=tmpdir)
        assert_in(dset, in_=['COL_NAMES', 'DESCR', 'data'], out_=['target'])

        assert_equal(dset.data.shape, (2, 3))
        assert_array_equal(dset.data, x)

        # transposing the data array
        dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir)
        assert_equal(dset.data.shape, (3, 2))
    finally:
        datasets.mldata.urllib2 = _urllib2_ref
开发者ID:QuarkSpark,项目名称:scikit-learn,代码行数:19,代码来源:test_mldata.py


示例16: test_unseen_or_no_features

def test_unseen_or_no_features():
    D = [{"camelot": 0, "spamalot": 1}]
    for sparse in [True, False]:
        v = DictVectorizer(sparse=sparse).fit(D)

        X = v.transform({"push the pram a lot": 2})
        if sparse:
            X = X.toarray()
        assert_array_equal(X, np.zeros((1, 2)))

        X = v.transform({})
        if sparse:
            X = X.toarray()
        assert_array_equal(X, np.zeros((1, 2)))

        try:
            v.transform([])
        except ValueError as e:
            assert_in("empty", str(e))
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:19,代码来源:test_dict_vectorizer.py


示例17: test_valid_brute_metric_for_auto_algorithm

def test_valid_brute_metric_for_auto_algorithm():
    X = rng.rand(12, 12)
    Xcsr = csr_matrix(X)

    # check that there is a metric that is valid for brute
    # but not ball_tree (so we actually test something)
    assert_in("cosine", VALID_METRICS['brute'])
    assert_false("cosine" in VALID_METRICS['ball_tree'])

    # Metric which don't required any additional parameter
    require_params = ['mahalanobis', 'wminkowski', 'seuclidean']
    for metric in VALID_METRICS['brute']:
        if metric != 'precomputed' and metric not in require_params:
            nn = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto',
                                            metric=metric).fit(X)
            nn.kneighbors(X)
        elif metric == 'precomputed':
            X_precomputed = rng.random_sample((10, 4))
            Y_precomputed = rng.random_sample((3, 4))
            DXX = metrics.pairwise_distances(X_precomputed, metric='euclidean')
            DYX = metrics.pairwise_distances(Y_precomputed, X_precomputed,
                                             metric='euclidean')
            nb_p = neighbors.NearestNeighbors(n_neighbors=3)
            nb_p.fit(DXX)
            nb_p.kneighbors(DYX)

    for metric in VALID_METRICS_SPARSE['brute']:
        if metric != 'precomputed' and metric not in require_params:
            nn = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto',
                                            metric=metric).fit(Xcsr)
            nn.kneighbors(Xcsr)

    # Metric with parameter
    VI = np.dot(X, X.T)
    list_metrics = [('seuclidean', dict(V=rng.rand(12))),
                    ('wminkowski', dict(w=rng.rand(12))),
                    ('mahalanobis', dict(VI=VI))]
    for metric, params in list_metrics:
        nn = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto',
                                        metric=metric,
                                        metric_params=params).fit(X)
        nn.kneighbors(X)
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:42,代码来源:test_neighbors.py


示例18: test_download

def test_download(tmpdata):
    """Test that fetch_mldata is able to download and cache a data set."""
    _urlopen_ref = datasets.mldata.urlopen
    datasets.mldata.urlopen = mock_mldata_urlopen({
        'mock': {
            'label': sp.ones((150,)),
            'data': sp.ones((150, 4)),
        },
    })
    try:
        mock = fetch_mldata('mock', data_home=tmpdata)
        for n in ["COL_NAMES", "DESCR", "target", "data"]:
            assert_in(n, mock)

        assert_equal(mock.target.shape, (150,))
        assert_equal(mock.data.shape, (150, 4))

        assert_raises(datasets.mldata.HTTPError,
                      fetch_mldata, 'not_existing_name')
    finally:
        datasets.mldata.urlopen = _urlopen_ref
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:21,代码来源:test_mldata.py


示例19: test_fetch_one_column

def test_fetch_one_column():
    _urlopen_ref = datasets.mldata.urlopen
    try:
        dataname = 'onecol'
        # create fake data set in cache
        x = sp.arange(6).reshape(2, 3)
        datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}})

        dset = fetch_mldata(dataname, data_home=tmpdir)
        for n in ["COL_NAMES", "DESCR", "data"]:
            assert_in(n, dset)
        assert_not_in("target", dset)

        assert_equal(dset.data.shape, (2, 3))
        assert_array_equal(dset.data, x)

        # transposing the data array
        dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir)
        assert_equal(dset.data.shape, (3, 2))
    finally:
        datasets.mldata.urlopen = _urlopen_ref
开发者ID:Ranumao,项目名称:scikit-learn,代码行数:21,代码来源:test_mldata.py


示例20: test_n_iter_without_progress

def test_n_iter_without_progress():
    # Use a dummy negative n_iter_without_progress and check output on stdout
    random_state = check_random_state(0)
    X = random_state.randn(100, 10)
    for method in ["barnes_hut", "exact"]:
        tsne = TSNE(n_iter_without_progress=-1, verbose=2, learning_rate=1e8,
                    random_state=0, method=method, n_iter=351, init="random")
        tsne._N_ITER_CHECK = 1
        tsne._EXPLORATION_N_ITER = 0

        old_stdout = sys.stdout
        sys.stdout = StringIO()
        try:
            tsne.fit_transform(X)
        finally:
            out = sys.stdout.getvalue()
            sys.stdout.close()
            sys.stdout = old_stdout

        # The output needs to contain the value of n_iter_without_progress
        assert_in("did not make any progress during the "
                  "last -1 episodes. Finished.", out)
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:22,代码来源:test_t_sne.py



注:本文中的sklearn.utils.testing.assert_in函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python testing.assert_less函数代码示例发布时间:2022-05-27
下一篇:
Python testing.assert_greater_equal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap