本文整理汇总了Python中sklearn.utils.testing.assert_less_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_less_equal函数的具体用法?Python assert_less_equal怎么用?Python assert_less_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_less_equal函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_min_max_scaler_1d
def test_min_max_scaler_1d():
"""Test scaling of dataset along single axis"""
rng = np.random.RandomState(0)
X = rng.randn(5)
X_orig_copy = X.copy()
scaler = MinMaxScaler()
X_scaled = scaler.fit(X).transform(X)
assert_array_almost_equal(X_scaled.min(axis=0), 0.0)
assert_array_almost_equal(X_scaled.max(axis=0), 1.0)
# check inverse transform
X_scaled_back = scaler.inverse_transform(X_scaled)
assert_array_almost_equal(X_scaled_back, X_orig_copy)
# Test with 1D list
X = [0., 1., 2, 0.4, 1.]
scaler = MinMaxScaler()
X_scaled = scaler.fit(X).transform(X)
assert_array_almost_equal(X_scaled.min(axis=0), 0.0)
assert_array_almost_equal(X_scaled.max(axis=0), 1.0)
# Constant feature.
X = np.zeros(5)
scaler = MinMaxScaler()
X_scaled = scaler.fit(X).transform(X)
assert_greater_equal(X_scaled.min(), 0.)
assert_less_equal(X_scaled.max(), 1.)
开发者ID:0x0all,项目名称:scikit-learn,代码行数:28,代码来源:test_data.py
示例2: check_decision_path
def check_decision_path(name):
X = iris.data
y = iris.target
n_samples = X.shape[0]
TreeEstimator = ALL_TREES[name]
est = TreeEstimator(random_state=0, max_depth=2)
est.fit(X, y)
node_indicator_csr = est.decision_path(X)
node_indicator = node_indicator_csr.toarray()
assert_equal(node_indicator.shape, (n_samples, est.tree_.node_count))
# Assert that leaves index are correct
leaves = est.apply(X)
leave_indicator = [node_indicator[i, j] for i, j in enumerate(leaves)]
assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples))
# Ensure only one leave node per sample
all_leaves = est.tree_.children_left == TREE_LEAF
assert_array_almost_equal(np.dot(node_indicator, all_leaves),
np.ones(shape=n_samples))
# Ensure max depth is consistent with sum of indicator
max_depth = node_indicator.sum(axis=1).max()
assert_less_equal(est.tree_.max_depth, max_depth)
开发者ID:arjoly,项目名称:scikit-learn,代码行数:26,代码来源:test_tree.py
示例3: test_pearsonr_mat
def test_pearsonr_mat(self):
pear_mat = pearsonr_mat(self.mat)
assert_equal(pear_mat.shape, (10, 10))
pear_mat = pearsonr_mat(self.mat, self.w_mat)
assert_equal(pear_mat.shape, (10, 10))
assert_greater_equal(np.min(pear_mat), -1)
assert_less_equal(np.max(pear_mat), 1)
开发者ID:flaviassantos,项目名称:pyod,代码行数:9,代码来源:test_stat_models.py
示例4: test_optimization_minimizes_kl_divergence
def test_optimization_minimizes_kl_divergence():
"""t-SNE should give a lower KL divergence with more iterations."""
random_state = check_random_state(0)
X, _ = make_blobs(n_features=3, random_state=random_state)
kl_divergences = []
for n_iter in [200, 250, 300]:
tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, n_iter=n_iter, random_state=0)
tsne.fit_transform(X)
kl_divergences.append(tsne.kl_divergence_)
assert_less_equal(kl_divergences[1], kl_divergences[0])
assert_less_equal(kl_divergences[2], kl_divergences[1])
开发者ID:sofianehaddad,项目名称:scikit-learn,代码行数:11,代码来源:test_t_sne.py
示例5: test_precision
def test_precision():
rng_reg = RandomState(2)
rng_clf = RandomState(8)
for X, y, clf in zip(
(rng_reg.random_sample((5, 2)),
rng_clf.random_sample((1000, 4))),
(rng_reg.random_sample((5, )),
rng_clf.randint(2, size=(1000, ))),
(DecisionTreeRegressor(criterion="friedman_mse", random_state=0,
max_depth=1),
DecisionTreeClassifier(max_depth=1, random_state=0))):
clf.fit(X, y)
for precision in (4, 3):
dot_data = export_graphviz(clf, out_file=None, precision=precision,
proportion=True)
# With the current random state, the impurity and the threshold
# will have the number of precision set in the export_graphviz
# function. We will check the number of precision with a strict
# equality. The value reported will have only 2 precision and
# therefore, only a less equal comparison will be done.
# check value
for finding in finditer(r"value = \d+\.\d+", dot_data):
assert_less_equal(
len(search(r"\.\d+", finding.group()).group()),
precision + 1)
# check impurity
if is_classifier(clf):
pattern = r"gini = \d+\.\d+"
else:
pattern = r"friedman_mse = \d+\.\d+"
# check impurity
for finding in finditer(pattern, dot_data):
assert_equal(len(search(r"\.\d+", finding.group()).group()),
precision + 1)
# check threshold
for finding in finditer(r"<= \d+\.\d+", dot_data):
assert_equal(len(search(r"\.\d+", finding.group()).group()),
precision + 1)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:43,代码来源:test_export.py
示例6: test_data_generate
def test_data_generate(self):
X_train, y_train, X_test, y_test = \
generate_data(n_train=self.n_train,
n_test=self.n_test,
contamination=self.contamination)
assert_equal(y_train.shape[0], X_train.shape[0])
assert_equal(y_test.shape[0], X_test.shape[0])
assert_less_equal(self.n_train - X_train.shape[0], 1)
assert_equal(X_train.shape[1], 2)
assert_less_equal(self.n_test - X_test.shape[0], 1)
assert_equal(X_test.shape[1], 2)
out_perc = np.sum(y_train) / self.n_train
assert_allclose(self.contamination, out_perc, atol=0.01)
out_perc = np.sum(y_test) / self.n_test
assert_allclose(self.contamination, out_perc, atol=0.01)
开发者ID:flaviassantos,项目名称:pyod,代码行数:20,代码来源:test_data.py
示例7: test_min_grad_norm
def test_min_grad_norm():
# Make sure that the parameter min_grad_norm is used correctly
random_state = check_random_state(0)
X = random_state.randn(100, 2)
min_grad_norm = 0.002
tsne = TSNE(min_grad_norm=min_grad_norm, verbose=2,
random_state=0, method='exact')
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
tsne.fit_transform(X)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
lines_out = out.split('\n')
# extract the gradient norm from the verbose output
gradient_norm_values = []
for line in lines_out:
# When the computation is Finished just an old gradient norm value
# is repeated that we do not need to store
if 'Finished' in line:
break
start_grad_norm = line.find('gradient norm')
if start_grad_norm >= 0:
line = line[start_grad_norm:]
line = line.replace('gradient norm = ', '').split(' ')[0]
gradient_norm_values.append(float(line))
# Compute how often the gradient norm is smaller than min_grad_norm
gradient_norm_values = np.array(gradient_norm_values)
n_smaller_gradient_norms = \
len(gradient_norm_values[gradient_norm_values <= min_grad_norm])
# The gradient norm can be smaller than min_grad_norm at most once,
# because in the moment it becomes smaller the optimization stops
assert_less_equal(n_smaller_gradient_norms, 1)
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:41,代码来源:test_t_sne.py
示例8: test_rbf_sampler
def test_rbf_sampler():
# test that RBFSampler approximates kernel on random data
# compute exact kernel
gamma = 10.
kernel = rbf_kernel(X, Y, gamma=gamma)
# approximate kernel mapping
rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42)
X_trans = rbf_transform.fit_transform(X)
Y_trans = rbf_transform.transform(Y)
kernel_approx = np.dot(X_trans, Y_trans.T)
error = kernel - kernel_approx
assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased
np.abs(error, out=error)
assert_less_equal(np.max(error), 0.1) # nothing too far off
assert_less_equal(np.mean(error), 0.05) # mean is fairly close
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:17,代码来源:test_kernel_approximation.py
示例9: test_assert_less_equal
def test_assert_less_equal():
assert_less_equal(0, 1)
assert_less_equal(1, 1)
assert_raises(AssertionError, assert_less_equal, 1, 0)
开发者ID:Afey,项目名称:scikit-learn,代码行数:4,代码来源:test_testing.py
示例10: test_prediction_proba_unify
def test_prediction_proba_unify(self):
pred_proba = self.clf.predict_proba(self.X_test, method='unify')
assert_greater_equal(pred_proba.min(), 0)
assert_less_equal(pred_proba.max(), 1)
开发者ID:flaviassantos,项目名称:pyod,代码行数:4,代码来源:test_lof.py
示例11: test_prediction_proba
def test_prediction_proba(self):
pred_proba = self.clf.predict_proba(self.X_test)
assert_greater_equal(pred_proba.min(), 0)
assert_less_equal(pred_proba.max(), 1)
开发者ID:flaviassantos,项目名称:pyod,代码行数:4,代码来源:test_lof.py
示例12: check_limits
def check_limits(value, lower_bound, upper_bound):
assert_less_equal(lower_bound, value)
assert_greater(upper_bound, value)
开发者ID:glouppe,项目名称:scikit-optimize,代码行数:3,代码来源:test_space.py
示例13: test_prediction_proba
def test_prediction_proba(self):
pred_proba = self.clf.predict_proba(self.X_test)
assert_greater_equal(pred_proba.min(), 0)
assert_less_equal(pred_proba.max(), 1)
# check performance
assert_greater(roc_auc_score(self.y_test, pred_proba), self.roc_floor)
开发者ID:flaviassantos,项目名称:pyod,代码行数:6,代码来源:test_xgbod.py
注:本文中的sklearn.utils.testing.assert_less_equal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论