本文整理汇总了Python中sklearn.utils.testing.assert_not_equal函数的典型用法代码示例。如果您正苦于以下问题:Python assert_not_equal函数的具体用法?Python assert_not_equal怎么用?Python assert_not_equal使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了assert_not_equal函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_base
def test_base():
# Check BaseEnsemble methods.
ensemble = BaggingClassifier(
base_estimator=Perceptron(tol=1e-3, random_state=None), n_estimators=3)
iris = load_iris()
ensemble.fit(iris.data, iris.target)
ensemble.estimators_ = [] # empty the list and create estimators manually
ensemble._make_estimator()
random_state = np.random.RandomState(3)
ensemble._make_estimator(random_state=random_state)
ensemble._make_estimator(random_state=random_state)
ensemble._make_estimator(append=False)
assert_equal(3, len(ensemble))
assert_equal(3, len(ensemble.estimators_))
assert_true(isinstance(ensemble[0], Perceptron))
assert_equal(ensemble[0].random_state, None)
assert_true(isinstance(ensemble[1].random_state, int))
assert_true(isinstance(ensemble[2].random_state, int))
assert_not_equal(ensemble[1].random_state, ensemble[2].random_state)
np_int_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
n_estimators=np.int32(3))
np_int_ensemble.fit(iris.data, iris.target)
开发者ID:NickleDave,项目名称:scikit-learn,代码行数:27,代码来源:test_base.py
示例2: test_hash_functions
def test_hash_functions():
# Checks randomness of hash functions.
# Variance and mean of each hash function (projection vector)
# should be different from flattened array of hash functions.
# If hash functions are not randomly built (seeded with
# same value), variances and means of all functions are equal.
n_samples = 12
n_features = 2
n_estimators = 5
rng = np.random.RandomState(42)
X = rng.rand(n_samples, n_features)
lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
n_estimators=n_estimators,
random_state=rng.randint(0, np.iinfo(np.int32).max))
ignore_warnings(lshf.fit)(X)
hash_functions = []
for i in range(n_estimators):
hash_functions.append(lshf.hash_functions_[i].components_)
for i in range(n_estimators):
assert_not_equal(np.var(hash_functions),
np.var(lshf.hash_functions_[i].components_))
for i in range(n_estimators):
assert_not_equal(np.mean(hash_functions),
np.mean(lshf.hash_functions_[i].components_))
开发者ID:NelleV,项目名称:scikit-learn,代码行数:28,代码来源:test_approximate.py
示例3: test_kernel_pca
def test_kernel_pca():
rng = np.random.RandomState(0)
X_fit = rng.random_sample((5, 4))
X_pred = rng.random_sample((2, 4))
for eigen_solver in ("auto", "dense", "arpack"):
for kernel in ("linear", "rbf", "poly"):
# transform fit data
kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver,
fit_inverse_transform=True)
X_fit_transformed = kpca.fit_transform(X_fit)
X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit)
assert_array_almost_equal(np.abs(X_fit_transformed),
np.abs(X_fit_transformed2))
# non-regression test: previously, gamma would be 0 by default,
# forcing all eigenvalues to 0 under the poly kernel
assert_not_equal(X_fit_transformed, [])
# transform new data
X_pred_transformed = kpca.transform(X_pred)
assert_equal(X_pred_transformed.shape[1],
X_fit_transformed.shape[1])
# inverse transform
X_pred2 = kpca.inverse_transform(X_pred_transformed)
assert_equal(X_pred2.shape, X_pred.shape)
开发者ID:Big-Data,项目名称:scikit-learn,代码行数:27,代码来源:test_kernel_pca.py
示例4: test_cross_val_generator_with_indices
def test_cross_val_generator_with_indices():
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([1, 1, 2, 2])
labels = np.array([1, 2, 3, 4])
# explicitly passing indices value is deprecated
loo = assert_warns(DeprecationWarning, cval.LeaveOneOut,
4, indices=True)
lpo = assert_warns(DeprecationWarning, cval.LeavePOut,
4, 2, indices=True)
kf = assert_warns(DeprecationWarning, cval.KFold,
4, 2, indices=True)
skf = assert_warns(DeprecationWarning, cval.StratifiedKFold,
y, 2, indices=True)
lolo = assert_warns(DeprecationWarning, cval.LeaveOneLabelOut,
labels, indices=True)
lopo = assert_warns(DeprecationWarning, cval.LeavePLabelOut,
labels, 2, indices=True)
b = cval.Bootstrap(2) # only in index mode
ss = assert_warns(DeprecationWarning, cval.ShuffleSplit,
2, indices=True)
for cv in [loo, lpo, kf, skf, lolo, lopo, b, ss]:
for train, test in cv:
assert_not_equal(np.asarray(train).dtype.kind, 'b')
assert_not_equal(np.asarray(train).dtype.kind, 'b')
X_train, X_test = X[train], X[test]
y_train, y_test = y[train], y[test]
开发者ID:GGXH,项目名称:scikit-learn,代码行数:26,代码来源:test_cross_validation.py
示例5: test_kernel_clone
def test_kernel_clone():
""" Test that sklearn's clone works correctly on kernels. """
for kernel in kernels:
kernel_cloned = clone(kernel)
assert_equal(kernel, kernel_cloned)
assert_not_equal(id(kernel), id(kernel_cloned))
for attr in kernel.__dict__.keys():
attr_value = getattr(kernel, attr)
attr_value_cloned = getattr(kernel_cloned, attr)
if attr.startswith("hyperparameter_"):
assert_equal(attr_value.name, attr_value_cloned.name)
assert_equal(attr_value.value_type,
attr_value_cloned.value_type)
assert_array_equal(attr_value.bounds,
attr_value_cloned.bounds)
assert_equal(attr_value.n_elements,
attr_value_cloned.n_elements)
elif np.iterable(attr_value):
for i in range(len(attr_value)):
if np.iterable(attr_value[i]):
assert_array_equal(attr_value[i],
attr_value_cloned[i])
else:
assert_equal(attr_value[i], attr_value_cloned[i])
else:
assert_equal(attr_value, attr_value_cloned)
if not isinstance(attr_value, Hashable):
# modifiable attributes must not be identical
assert_not_equal(id(attr_value), id(attr_value_cloned))
开发者ID:AlexanderFabisch,项目名称:scikit-learn,代码行数:30,代码来源:test_kernels.py
示例6: test_kernel_clone_after_set_params
def test_kernel_clone_after_set_params():
# This test is to verify that using set_params does not
# break clone on kernels.
# This used to break because in kernels such as the RBF, non-trivial
# logic that modified the length scale used to be in the constructor
# See https://github.com/scikit-learn/scikit-learn/issues/6961
# for more details.
bounds = (1e-5, 1e5)
for kernel in kernels:
kernel_cloned = clone(kernel)
params = kernel.get_params()
# RationalQuadratic kernel is isotropic.
isotropic_kernels = (ExpSineSquared, RationalQuadratic)
if 'length_scale' in params and not isinstance(kernel,
isotropic_kernels):
length_scale = params['length_scale']
if np.iterable(length_scale):
params['length_scale'] = length_scale[0]
params['length_scale_bounds'] = bounds
else:
params['length_scale'] = [length_scale] * 2
params['length_scale_bounds'] = bounds * 2
kernel_cloned.set_params(**params)
kernel_cloned_clone = clone(kernel_cloned)
assert_equal(kernel_cloned_clone.get_params(),
kernel_cloned.get_params())
assert_not_equal(id(kernel_cloned_clone), id(kernel_cloned))
yield (check_hyperparameters_equal, kernel_cloned,
kernel_cloned_clone)
开发者ID:AlexandreAbraham,项目名称:scikit-learn,代码行数:29,代码来源:test_kernels.py
示例7: test_grid_search_score_method
def test_grid_search_score_method():
X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
random_state=0)
clf = LinearSVC(random_state=0)
grid = {'C': [.1]}
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
scoring='roc_auc').fit(X, y)
search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)
# ChangedBehaviourWarning occurred previously (prior to #9005)
score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y)
score_accuracy = assert_no_warnings(search_accuracy.score, X, y)
score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score,
X, y)
score_auc = assert_no_warnings(search_auc.score, X, y)
# ensure the test is sane
assert_true(score_auc < 1.0)
assert_true(score_accuracy < 1.0)
assert_not_equal(score_auc, score_accuracy)
assert_almost_equal(score_accuracy, score_no_scoring)
assert_almost_equal(score_auc, score_no_score_auc)
开发者ID:BasilBeirouti,项目名称:scikit-learn,代码行数:26,代码来源:test_grid_search.py
示例8: test_kernel_pca
def test_kernel_pca():
rng = np.random.RandomState(0)
X_fit = rng.random_sample((5, 4))
X_pred = rng.random_sample((2, 4))
def histogram(x, y, **kwargs):
# Histogram kernel implemented as a callable.
assert_equal(kwargs, {}) # no kernel_params that we didn't ask for
return np.minimum(x, y).sum()
for eigen_solver in ("auto", "dense", "arpack"):
for kernel in ("linear", "rbf", "poly", histogram):
# histogram kernel produces singular matrix inside linalg.solve
# XXX use a least-squares approximation?
inv = not callable(kernel)
# transform fit data
kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv)
X_fit_transformed = kpca.fit_transform(X_fit)
X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit)
assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2))
# non-regression test: previously, gamma would be 0 by default,
# forcing all eigenvalues to 0 under the poly kernel
assert_not_equal(X_fit_transformed.size, 0)
# transform new data
X_pred_transformed = kpca.transform(X_pred)
assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1])
# inverse transform
if inv:
X_pred2 = kpca.inverse_transform(X_pred_transformed)
assert_equal(X_pred2.shape, X_pred.shape)
开发者ID:Claire-Ling-Liu,项目名称:scikit-learn,代码行数:34,代码来源:test_kernel_pca.py
示例9: test_discretenb_predict_proba
def test_discretenb_predict_proba():
"""Test discrete NB classes' probability scores"""
# The 100s below distinguish Bernoulli from multinomial.
X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]]
X_multinomial = [[0, 1], [1, 3], [4, 0]]
# Confirm that the 100s above distinguish Bernoulli from multinomial
y = [0, 0, 1]
cls_b = BernoulliNB().fit(X_bernoulli, y)
cls_m = MultinomialNB().fit(X_bernoulli, y)
assert_not_equal(cls_b.predict(X_bernoulli)[-1],
cls_m.predict(X_bernoulli)[-1])
# test binary case (1-d output)
y = [0, 0, 2] # 2 is regression test for binary case, 02e673
for cls, X in zip([BernoulliNB, MultinomialNB],
[X_bernoulli, X_multinomial]):
clf = cls().fit(X, y)
assert_equal(clf.predict(X[-1]), 2)
assert_equal(clf.predict_proba(X[0]).shape, (1, 2))
assert_array_almost_equal(clf.predict_proba(X[:2]).sum(axis=1),
np.array([1., 1.]), 6)
# test multiclass case (2-d output, must sum to one)
y = [0, 1, 2]
for cls, X in zip([BernoulliNB, MultinomialNB],
[X_bernoulli, X_multinomial]):
clf = cls().fit(X, y)
assert_equal(clf.predict_proba(X[0]).shape, (1, 3))
assert_equal(clf.predict_proba(X[:2]).shape, (2, 3))
assert_almost_equal(np.sum(clf.predict_proba(X[1])), 1)
assert_almost_equal(np.sum(clf.predict_proba(X[-1])), 1)
assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1)
assert_almost_equal(np.sum(np.exp(clf.intercept_)), 1)
开发者ID:BrianLondon,项目名称:scikit-learn,代码行数:35,代码来源:test_naive_bayes.py
示例10: test_grid_search_score_method
def test_grid_search_score_method():
X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
random_state=0)
clf = LinearSVC(random_state=0)
grid = {'C': [.1]}
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
scoring='roc_auc').fit(X, y)
search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)
# Check warning only occurs in situation where behavior changed:
# estimator requires score method to compete with scoring parameter
score_no_scoring = search_no_scoring.score(X, y)
score_accuracy = search_accuracy.score(X, y)
score_no_score_auc = search_no_score_method_auc.score(X, y)
score_auc = search_auc.score(X, y)
# ensure the test is sane
assert_true(score_auc < 1.0)
assert_true(score_accuracy < 1.0)
assert_not_equal(score_auc, score_accuracy)
assert_almost_equal(score_accuracy, score_no_scoring)
assert_almost_equal(score_auc, score_no_score_auc)
开发者ID:YinongLong,项目名称:scikit-learn,代码行数:26,代码来源:test_search.py
示例11: test_additive_chi2_sampler
def test_additive_chi2_sampler():
# test that AdditiveChi2Sampler approximates kernel on random data
# compute exact kernel
# appreviations for easier formular
X_ = X[:, np.newaxis, :]
Y_ = Y[np.newaxis, :, :]
large_kernel = 2 * X_ * Y_ / (X_ + Y_)
# reduce to n_samples_x x n_samples_y by summing over features
kernel = (large_kernel.sum(axis=2))
# approximate kernel mapping
transform = AdditiveChi2Sampler(sample_steps=3)
X_trans = transform.fit_transform(X)
Y_trans = transform.transform(Y)
kernel_approx = np.dot(X_trans, Y_trans.T)
assert_array_almost_equal(kernel, kernel_approx, 1)
X_sp_trans = transform.fit_transform(csr_matrix(X))
Y_sp_trans = transform.transform(csr_matrix(Y))
assert_array_equal(X_trans, X_sp_trans.A)
assert_array_equal(Y_trans, Y_sp_trans.A)
# test error is raised on negative input
Y_neg = Y.copy()
Y_neg[0, 0] = -1
assert_raises(ValueError, transform.transform, Y_neg)
# test error on invalid sample_steps
transform = AdditiveChi2Sampler(sample_steps=4)
assert_raises(ValueError, transform.fit, X)
# test that the sample interval is set correctly
sample_steps_available = [1, 2, 3]
for sample_steps in sample_steps_available:
# test that the sample_interval is initialized correctly
transform = AdditiveChi2Sampler(sample_steps=sample_steps)
assert_equal(transform.sample_interval, None)
# test that the sample_interval is changed in the fit method
transform.fit(X)
assert_not_equal(transform.sample_interval_, None)
# test that the sample_interval is set correctly
sample_interval = 0.3
transform = AdditiveChi2Sampler(sample_steps=4,
sample_interval=sample_interval)
assert_equal(transform.sample_interval, sample_interval)
transform.fit(X)
assert_equal(transform.sample_interval_, sample_interval)
开发者ID:1TTT9,项目名称:scikit-learn,代码行数:56,代码来源:test_kernel_approximation.py
示例12: test_scorer_sample_weight
def test_scorer_sample_weight():
# Test that scorers support sample_weight or raise sensible errors
# Unlike the metrics invariance test, in the scorer case it's harder
# to ensure that, on the classifier output, weighted and unweighted
# scores really should be unequal.
X, y = make_classification(random_state=0)
_, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0)
split = train_test_split(X, y, y_ml, random_state=0)
X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split
sample_weight = np.ones_like(y_test)
sample_weight[:10] = 0
# get sensible estimators for each metric
sensible_regr = DummyRegressor(strategy="median")
sensible_regr.fit(X_train, y_train)
sensible_clf = DecisionTreeClassifier(random_state=0)
sensible_clf.fit(X_train, y_train)
sensible_ml_clf = DecisionTreeClassifier(random_state=0)
sensible_ml_clf.fit(X_train, y_ml_train)
estimator = dict(
[(name, sensible_regr) for name in REGRESSION_SCORERS]
+ [(name, sensible_clf) for name in CLF_SCORERS]
+ [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]
)
for name, scorer in SCORERS.items():
if name in MULTILABEL_ONLY_SCORERS:
target = y_ml_test
else:
target = y_test
try:
weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight)
ignored = scorer(estimator[name], X_test[10:], target[10:])
unweighted = scorer(estimator[name], X_test, target)
assert_not_equal(
weighted,
unweighted,
msg="scorer {0} behaves identically when "
"called with sample weights: {1} vs "
"{2}".format(name, weighted, unweighted),
)
assert_almost_equal(
weighted,
ignored,
err_msg="scorer {0} behaves differently when "
"ignoring samples and setting sample_weight to"
" 0: {1} vs {2}".format(name, weighted, ignored),
)
except TypeError as e:
assert_true(
"sample_weight" in str(e),
"scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e)),
)
开发者ID:haadkhan,项目名称:cerebri,代码行数:56,代码来源:test_score_objects.py
示例13: test_shuffle_stratifiedkfold
def test_shuffle_stratifiedkfold():
# Check that shuffling is happening when requested, and for proper
# sample coverage
X_40 = np.ones(40)
y = [0] * 20 + [1] * 20
kf0 = StratifiedKFold(5, shuffle=True, random_state=0)
kf1 = StratifiedKFold(5, shuffle=True, random_state=1)
for (_, test0), (_, test1) in zip(kf0.split(X_40, y),
kf1.split(X_40, y)):
assert_not_equal(set(test0), set(test1))
check_cv_coverage(kf0, X_40, y, labels=None, expected_n_iter=5)
开发者ID:absolutelyNoWarranty,项目名称:scikit-learn,代码行数:11,代码来源:test_split.py
示例14: test_average_precision_score_tied_values
def test_average_precision_score_tied_values():
# Here if we go from left to right in y_true, the 0 values are
# are separated from the 1 values, so it appears that we've
# Correctly sorted our classifications. But in fact the first two
# values have the same score (0.5) and so the first two values
# could be swapped around, creating an imperfect sorting. This
# imperfection should come through in the end score, making it less
# than one.
y_true = [0, 1, 1]
y_score = [.5, .5, .6]
assert_not_equal(average_precision_score(y_true, y_score), 1.)
开发者ID:nateyoder,项目名称:scikit-learn,代码行数:11,代码来源:test_classification.py
示例15: test_beta_dist
def test_beta_dist():
du2 = [randn(n_features, 1) for i in range(n_kernels)]
for i in range(len(du2)):
du2[i] /= norm(du2[i])
assert_equal(0., beta_dist(du, du))
assert_not_equal(0., beta_dist(du, du2))
du2 = [randn(n_features+2, 1) for i in range(n_kernels)]
for i in range(len(du2)):
du2[i] /= norm(du2[i])
assert_raises(ValueError, beta_dist, du, du2)
开发者ID:sylvchev,项目名称:mdla,代码行数:12,代码来源:test_dict_metrics.py
示例16: test_set_random_states
def test_set_random_states():
# Linear Discriminant Analysis doesn't have random state: smoke test
_set_random_states(LinearDiscriminantAnalysis(), random_state=17)
clf1 = Perceptron(tol=1e-3, random_state=None)
assert_equal(clf1.random_state, None)
# check random_state is None still sets
_set_random_states(clf1, None)
assert_true(isinstance(clf1.random_state, int))
# check random_state fixes results in consistent initialisation
_set_random_states(clf1, 3)
assert_true(isinstance(clf1.random_state, int))
clf2 = Perceptron(tol=1e-3, random_state=None)
_set_random_states(clf2, 3)
assert_equal(clf1.random_state, clf2.random_state)
# nested random_state
def make_steps():
return [('sel', SelectFromModel(Perceptron(tol=1e-3,
random_state=None))),
('clf', Perceptron(tol=1e-3, random_state=None))]
est1 = Pipeline(make_steps())
_set_random_states(est1, 3)
assert_true(isinstance(est1.steps[0][1].estimator.random_state, int))
assert_true(isinstance(est1.steps[1][1].random_state, int))
assert_not_equal(est1.get_params()['sel__estimator__random_state'],
est1.get_params()['clf__random_state'])
# ensure multiple random_state paramaters are invariant to get_params()
# iteration order
class AlphaParamPipeline(Pipeline):
def get_params(self, *args, **kwargs):
params = Pipeline.get_params(self, *args, **kwargs).items()
return OrderedDict(sorted(params))
class RevParamPipeline(Pipeline):
def get_params(self, *args, **kwargs):
params = Pipeline.get_params(self, *args, **kwargs).items()
return OrderedDict(sorted(params, reverse=True))
for cls in [AlphaParamPipeline, RevParamPipeline]:
est2 = cls(make_steps())
_set_random_states(est2, 3)
assert_equal(est1.get_params()['sel__estimator__random_state'],
est2.get_params()['sel__estimator__random_state'])
assert_equal(est1.get_params()['clf__random_state'],
est2.get_params()['clf__random_state'])
开发者ID:NickleDave,项目名称:scikit-learn,代码行数:51,代码来源:test_base.py
示例17: test_multi_target_sample_weight_partial_fit
def test_multi_target_sample_weight_partial_fit():
# weighted regressor
X = [[1, 2, 3], [4, 5, 6]]
y = [[3.141, 2.718], [2.718, 3.141]]
w = [2., 1.]
rgr_w = MultiOutputRegressor(SGDRegressor(random_state=0))
rgr_w.partial_fit(X, y, w)
# weighted with different weights
w = [2., 2.]
rgr = MultiOutputRegressor(SGDRegressor(random_state=0))
rgr.partial_fit(X, y, w)
assert_not_equal(rgr.predict(X)[0][0], rgr_w.predict(X)[0][0])
开发者ID:MechCoder,项目名称:scikit-learn,代码行数:14,代码来源:test_multioutput.py
示例18: test_kernel_clone
def test_kernel_clone(kernel):
# Test that sklearn's clone works correctly on kernels.
kernel_cloned = clone(kernel)
# XXX: Should this be fixed?
# This differs from the sklearn's estimators equality check.
assert_equal(kernel, kernel_cloned)
assert_not_equal(id(kernel), id(kernel_cloned))
# Check that all constructor parameters are equal.
assert_equal(kernel.get_params(), kernel_cloned.get_params())
# Check that all hyperparameters are equal.
check_hyperparameters_equal(kernel, kernel_cloned)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:14,代码来源:test_kernels.py
示例19: test_verbose
def test_verbose():
"""Test whether verbose works as intended."""
X = Xboston
y = yboston
elm_fit = ELMRegressor(verbose=True)
elm_batch_fit = ELMRegressor(verbose=True, batch_size=50)
for elm in [elm_fit, elm_batch_fit]:
old_stdout = sys.stdout
sys.stdout = output = StringIO()
elm.fit(X, y)
sys.stdout = old_stdout
assert_not_equal(output.getvalue(), '')
开发者ID:IssamLaradji,项目名称:extreme-learning-machines,代码行数:15,代码来源:test_elm.py
示例20: test_classifier_chain_crossval_fit_and_predict
def test_classifier_chain_crossval_fit_and_predict():
# Fit classifier chain with cross_val_predict and verify predict
# performance
X, Y = generate_multilabel_dataset_with_correlations()
classifier_chain_cv = ClassifierChain(LogisticRegression(), cv=3)
classifier_chain_cv.fit(X, Y)
classifier_chain = ClassifierChain(LogisticRegression())
classifier_chain.fit(X, Y)
Y_pred_cv = classifier_chain_cv.predict(X)
Y_pred = classifier_chain.predict(X)
assert_equal(Y_pred_cv.shape, Y.shape)
assert_greater(jaccard_similarity_score(Y, Y_pred_cv), 0.4)
assert_not_equal(jaccard_similarity_score(Y, Y_pred_cv),
jaccard_similarity_score(Y, Y_pred))
开发者ID:fabionukui,项目名称:scikit-learn,代码行数:18,代码来源:test_multioutput.py
注:本文中的sklearn.utils.testing.assert_not_equal函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论