本文整理汇总了Python中sklearn.utils.testing.ignore_warnings函数的典型用法代码示例。如果您正苦于以下问题:Python ignore_warnings函数的具体用法?Python ignore_warnings怎么用?Python ignore_warnings使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ignore_warnings函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_enet_float_precision
def test_enet_float_precision():
# Generate dataset
X, y, X_test, y_test = build_dataset(n_samples=20, n_features=10)
# Here we have a small number of iterations, and thus the
# ElasticNet might not converge. This is to speed up tests
for normalize in [True, False]:
for fit_intercept in [True, False]:
coef = {}
intercept = {}
clf = ElasticNet(alpha=0.5, max_iter=100, precompute=False,
fit_intercept=fit_intercept, normalize=normalize)
for dtype in [np.float64, np.float32]:
X = dtype(X)
y = dtype(y)
ignore_warnings(clf.fit)(X, y)
coef[dtype] = clf.coef_
intercept[dtype] = clf.intercept_
assert_equal(clf.coef_.dtype, dtype)
assert_array_almost_equal(coef[np.float32], coef[np.float64],
decimal=4)
assert_array_almost_equal(intercept[np.float32],
intercept[np.float64],
decimal=4)
开发者ID:ClimbsRocks,项目名称:scikit-learn,代码行数:27,代码来源:test_coordinate_descent.py
示例2: test_enet_toy_list_input
def test_enet_toy_list_input():
# Test ElasticNet for various values of alpha and l1_ratio with list X
X = np.array([[-1], [0], [1]])
X = sp.csc_matrix(X)
Y = [-1, 0, 1] # just a straight line
T = np.array([[2], [3], [4]]) # test sample
# this should be the same as unregularized least squares
clf = ElasticNet(alpha=0, l1_ratio=1.0)
# catch warning about alpha=0.
# this is discouraged but should work.
ignore_warnings(clf.fit)(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [1])
assert_array_almost_equal(pred, [2, 3, 4])
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.50819], decimal=3)
assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3)
assert_almost_equal(clf.dual_gap_, 0)
clf = ElasticNet(alpha=0.5, l1_ratio=0.5)
clf.fit(X, Y)
pred = clf.predict(T)
assert_array_almost_equal(clf.coef_, [0.45454], 3)
assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3)
assert_almost_equal(clf.dual_gap_, 0)
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:31,代码来源:test_sparse_coordinate_descent.py
示例3: test_enet_path
def test_enet_path():
# We use a large number of samples and of informative features so that
# the l1_ratio selected is more toward ridge than lasso
X, y, X_test, y_test = build_dataset(n_samples=200, n_features=100,
n_informative_features=100)
max_iter = 150
# Here we have a small number of iterations, and thus the
# ElasticNet might not converge. This is to speed up tests
clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3,
max_iter=max_iter)
ignore_warnings(clf.fit)(X, y)
# Well-conditioned settings, we should have selected our
# smallest penalty
assert_almost_equal(clf.alpha_, min(clf.alphas_))
# Non-sparse ground truth: we should have seleted an elastic-net
# that is closer to ridge than to lasso
assert_equal(clf.l1_ratio_, min(clf.l1_ratio))
clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3,
max_iter=max_iter, precompute=True)
ignore_warnings(clf.fit)(X, y)
# Well-conditioned settings, we should have selected our
# smallest penalty
assert_almost_equal(clf.alpha_, min(clf.alphas_))
# Non-sparse ground truth: we should have seleted an elastic-net
# that is closer to ridge than to lasso
assert_equal(clf.l1_ratio_, min(clf.l1_ratio))
# We are in well-conditioned settings with low noise: we should
# have a good test-set performance
assert_greater(clf.score(X_test, y_test), 0.99)
开发者ID:DanielWeitzenfeld,项目名称:scikit-learn,代码行数:34,代码来源:test_coordinate_descent.py
示例4: test_hash_functions
def test_hash_functions():
# Checks randomness of hash functions.
# Variance and mean of each hash function (projection vector)
# should be different from flattened array of hash functions.
# If hash functions are not randomly built (seeded with
# same value), variances and means of all functions are equal.
n_samples = 12
n_features = 2
n_estimators = 5
rng = np.random.RandomState(42)
X = rng.rand(n_samples, n_features)
lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
n_estimators=n_estimators,
random_state=rng.randint(0, np.iinfo(np.int32).max))
ignore_warnings(lshf.fit)(X)
hash_functions = []
for i in range(n_estimators):
hash_functions.append(lshf.hash_functions_[i].components_)
for i in range(n_estimators):
assert_not_equal(np.var(hash_functions),
np.var(lshf.hash_functions_[i].components_))
for i in range(n_estimators):
assert_not_equal(np.mean(hash_functions),
np.mean(lshf.hash_functions_[i].components_))
开发者ID:NelleV,项目名称:scikit-learn,代码行数:28,代码来源:test_approximate.py
示例5: test_enet_l1_ratio
def test_enet_l1_ratio():
# Test that an error message is raised if an estimator that
# uses _alpha_grid is called with l1_ratio=0
msg = ("Automatic alpha grid generation is not supported for l1_ratio=0. "
"Please supply a grid by providing your estimator with the "
"appropriate `alphas=` argument.")
X = np.array([[1, 2, 4, 5, 8], [3, 5, 7, 7, 8]]).T
y = np.array([12, 10, 11, 21, 5])
assert_raise_message(ValueError, msg, ElasticNetCV(
l1_ratio=0, random_state=42).fit, X, y)
assert_raise_message(ValueError, msg, MultiTaskElasticNetCV(
l1_ratio=0, random_state=42).fit, X, y[:, None])
# Test that l1_ratio=0 is allowed if we supply a grid manually
alphas = [0.1, 10]
estkwds = {'alphas': alphas, 'random_state': 42}
est_desired = ElasticNetCV(l1_ratio=0.00001, **estkwds)
est = ElasticNetCV(l1_ratio=0, **estkwds)
with ignore_warnings():
est_desired.fit(X, y)
est.fit(X, y)
assert_array_almost_equal(est.coef_, est_desired.coef_, decimal=5)
est_desired = MultiTaskElasticNetCV(l1_ratio=0.00001, **estkwds)
est = MultiTaskElasticNetCV(l1_ratio=0, **estkwds)
with ignore_warnings():
est.fit(X, y[:, None])
est_desired.fit(X, y[:, None])
assert_array_almost_equal(est.coef_, est_desired.coef_, decimal=5)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:30,代码来源:test_coordinate_descent.py
示例6: test_fit
def test_fit():
# Checks whether `fit` method sets all attribute values correctly.
n_samples = 12
n_features = 2
n_estimators = 5
rng = np.random.RandomState(42)
X = rng.rand(n_samples, n_features)
lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
n_estimators=n_estimators)
ignore_warnings(lshf.fit)(X)
# _input_array = X
assert_array_equal(X, lshf._fit_X)
# A hash function g(p) for each tree
assert_equal(n_estimators, len(lshf.hash_functions_))
# Hash length = 32
assert_equal(32, lshf.hash_functions_[0].components_.shape[0])
# Number of trees_ in the forest
assert_equal(n_estimators, len(lshf.trees_))
# Each tree has entries for every data point
assert_equal(n_samples, len(lshf.trees_[0]))
# Original indices after sorting the hashes
assert_equal(n_estimators, len(lshf.original_indices_))
# Each set of original indices in a tree has entries for every data point
assert_equal(n_samples, len(lshf.original_indices_[0]))
开发者ID:NelleV,项目名称:scikit-learn,代码行数:26,代码来源:test_approximate.py
示例7: test_check_estimator_clones
def test_check_estimator_clones():
# check that check_estimator doesn't modify the estimator it receives
from sklearn.datasets import load_iris
iris = load_iris()
for Estimator in [GaussianMixture, LinearRegression,
RandomForestClassifier, NMF, SGDClassifier,
MiniBatchKMeans]:
with ignore_warnings(category=FutureWarning):
# when 'est = SGDClassifier()'
est = Estimator()
set_checking_parameters(est)
set_random_state(est)
# without fitting
old_hash = joblib.hash(est)
check_estimator(est)
assert_equal(old_hash, joblib.hash(est))
with ignore_warnings(category=FutureWarning):
# when 'est = SGDClassifier()'
est = Estimator()
set_checking_parameters(est)
set_random_state(est)
# with fitting
est.fit(iris.data + 10, iris.target)
old_hash = joblib.hash(est)
check_estimator(est)
assert_equal(old_hash, joblib.hash(est))
开发者ID:ZIP97,项目名称:scikit-learn,代码行数:28,代码来源:test_estimator_checks.py
示例8: test_neighbors_accuracy_with_n_estimators
def test_neighbors_accuracy_with_n_estimators():
# Checks whether accuracy increases as `n_estimators` increases.
n_estimators = np.array([1, 10, 100])
n_samples = 100
n_features = 10
n_iter = 10
n_points = 5
rng = np.random.RandomState(42)
accuracies = np.zeros(n_estimators.shape[0], dtype=float)
X = rng.rand(n_samples, n_features)
for i, t in enumerate(n_estimators):
lshf = ignore_warnings(LSHForest, category=DeprecationWarning)(
n_candidates=500, n_estimators=t)
ignore_warnings(lshf.fit)(X)
for j in range(n_iter):
query = X[rng.randint(0, n_samples)].reshape(1, -1)
neighbors = lshf.kneighbors(query, n_neighbors=n_points,
return_distance=False)
distances = pairwise_distances(query, X, metric='cosine')
ranks = np.argsort(distances)[0, :n_points]
intersection = np.intersect1d(ranks, neighbors).shape[0]
ratio = intersection / float(n_points)
accuracies[i] = accuracies[i] + ratio
accuracies[i] = accuracies[i] / float(n_iter)
# Sorted accuracies should be equal to original accuracies
assert_true(np.all(np.diff(accuracies) >= 0),
msg="Accuracies are not non-decreasing.")
# Highest accuracy should be strictly greater than the lowest
assert_true(np.ptp(accuracies) > 0,
msg="Highest accuracy is not strictly greater than lowest.")
开发者ID:NelleV,项目名称:scikit-learn,代码行数:33,代码来源:test_approximate.py
示例9: test_no_atoms
def test_no_atoms():
y_empty = np.zeros_like(y)
Xy_empty = np.dot(X.T, y_empty)
gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1)
gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1)
assert_equal(np.all(gamma_empty == 0), True)
assert_equal(np.all(gamma_empty_gram == 0), True)
开发者ID:1992huanghai,项目名称:scikit-learn,代码行数:7,代码来源:test_omp.py
示例10: test_sparse_input
def test_sparse_input():
# note: Fixed random state in sp.rand is not supported in older scipy.
# The test should succeed regardless.
X1 = sp.rand(50, 100)
X2 = sp.rand(10, 100)
forest_sparse = ignore_warnings(LSHForest, category=DeprecationWarning)(
radius=1, random_state=0).fit(X1)
forest_dense = ignore_warnings(LSHForest, category=DeprecationWarning)(
radius=1, random_state=0).fit(X1.A)
d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True)
d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True)
assert_almost_equal(d_sparse, d_dense)
assert_almost_equal(i_sparse, i_dense)
d_sparse, i_sparse = forest_sparse.radius_neighbors(X2,
return_distance=True)
d_dense, i_dense = forest_dense.radius_neighbors(X2.A,
return_distance=True)
assert_equal(d_sparse.shape, d_dense.shape)
for a, b in zip(d_sparse, d_dense):
assert_almost_equal(a, b)
for a, b in zip(i_sparse, i_dense):
assert_almost_equal(a, b)
开发者ID:NelleV,项目名称:scikit-learn,代码行数:25,代码来源:test_approximate.py
示例11: check_warm_start_oob
def check_warm_start_oob(name):
# Test that the warm start computes oob score when asked.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
# Use 15 estimators to avoid 'some inputs do not have OOB scores' warning.
clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False,
random_state=1, bootstrap=True, oob_score=True)
clf.fit(X, y)
clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False,
random_state=1, bootstrap=True, oob_score=False)
clf_2.fit(X, y)
clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15)
clf_2.fit(X, y)
assert_true(hasattr(clf_2, 'oob_score_'))
assert_equal(clf.oob_score_, clf_2.oob_score_)
# Test that oob_score is computed even if we don't need to train
# additional trees.
clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True,
random_state=1, bootstrap=True, oob_score=False)
clf_3.fit(X, y)
assert_true(not(hasattr(clf_3, 'oob_score_')))
clf_3.set_params(oob_score=True)
ignore_warnings(clf_3.fit)(X, y)
assert_equal(clf.oob_score_, clf_3.oob_score_)
开发者ID:henrywoo,项目名称:scikit-learn,代码行数:30,代码来源:test_forest.py
示例12: test_cross_val_predict_input_types
def test_cross_val_predict_input_types():
clf = Ridge()
# Smoke test
predictions = cval.cross_val_predict(clf, X, y)
assert_equal(predictions.shape, (10,))
# test with multioutput y
with ignore_warnings(category=ConvergenceWarning):
predictions = cval.cross_val_predict(clf, X_sparse, X)
assert_equal(predictions.shape, (10, 2))
predictions = cval.cross_val_predict(clf, X_sparse, y)
assert_array_equal(predictions.shape, (10,))
# test with multioutput y
with ignore_warnings(category=ConvergenceWarning):
predictions = cval.cross_val_predict(clf, X_sparse, X)
assert_array_equal(predictions.shape, (10, 2))
# test with X and y as list
list_check = lambda x: isinstance(x, list)
clf = CheckingClassifier(check_X=list_check)
predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist())
clf = CheckingClassifier(check_y=list_check)
predictions = cval.cross_val_predict(clf, X, y.tolist())
# test with 3d X and
X_3d = X[:, :, np.newaxis]
check_3d = lambda x: x.ndim == 3
clf = CheckingClassifier(check_X=check_3d)
predictions = cval.cross_val_predict(clf, X_3d, y)
assert_array_equal(predictions.shape, (10,))
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:33,代码来源:test_cross_validation.py
示例13: test_rfecv
def test_rfecv():
generator = check_random_state(0)
iris = load_iris()
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
y = list(iris.target) # regression test: list should be supported
# Test using the score function
rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5)
rfecv.fit(X, y)
# non-regression test for missing worst feature:
assert_equal(len(rfecv.grid_scores_), X.shape[1])
assert_equal(len(rfecv.ranking_), X.shape[1])
X_r = rfecv.transform(X)
# All the noisy variable were filtered out
assert_array_equal(X_r, iris.data)
# same in sparse
rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5)
X_sparse = sparse.csr_matrix(X)
rfecv_sparse.fit(X_sparse, y)
X_r_sparse = rfecv_sparse.transform(X_sparse)
assert_array_equal(X_r_sparse.toarray(), iris.data)
# Test using a customized loss function
scoring = make_scorer(zero_one_loss, greater_is_better=False)
rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scoring)
ignore_warnings(rfecv.fit)(X, y)
X_r = rfecv.transform(X)
assert_array_equal(X_r, iris.data)
# Test using a scorer
scorer = get_scorer("accuracy")
rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scorer)
rfecv.fit(X, y)
X_r = rfecv.transform(X)
assert_array_equal(X_r, iris.data)
# Test fix on grid_scores
def test_scorer(estimator, X, y):
return 1.0
rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=test_scorer)
rfecv.fit(X, y)
assert_array_equal(rfecv.grid_scores_, np.ones(len(rfecv.grid_scores_)))
# Same as the first two tests, but with step=2
rfecv = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5)
rfecv.fit(X, y)
assert_equal(len(rfecv.grid_scores_), 6)
assert_equal(len(rfecv.ranking_), X.shape[1])
X_r = rfecv.transform(X)
assert_array_equal(X_r, iris.data)
rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5)
X_sparse = sparse.csr_matrix(X)
rfecv_sparse.fit(X_sparse, y)
X_r_sparse = rfecv_sparse.transform(X_sparse)
assert_array_equal(X_r_sparse.toarray(), iris.data)
开发者ID:albertotb,项目名称:scikit-learn,代码行数:59,代码来源:test_rfe.py
示例14: test_radius_neighbors
def test_radius_neighbors():
# Checks whether Returned distances are less than `radius`
# At least one point should be returned when the `radius` is set
# to mean distance from the considering point to other points in
# the database.
# Moreover, this test compares the radius neighbors of LSHForest
# with the `sklearn.neighbors.NearestNeighbors`.
n_samples = 12
n_features = 2
n_iter = 10
rng = np.random.RandomState(42)
X = rng.rand(n_samples, n_features)
lshf = ignore_warnings(LSHForest, category=DeprecationWarning)()
# Test unfitted estimator
assert_raises(ValueError, lshf.radius_neighbors, X[0])
ignore_warnings(lshf.fit)(X)
for i in range(n_iter):
# Select a random point in the dataset as the query
query = X[rng.randint(0, n_samples)].reshape(1, -1)
# At least one neighbor should be returned when the radius is the
# mean distance from the query to the points of the dataset.
mean_dist = np.mean(pairwise_distances(query, X, metric='cosine'))
neighbors = lshf.radius_neighbors(query, radius=mean_dist,
return_distance=False)
assert_equal(neighbors.shape, (1,))
assert_equal(neighbors.dtype, object)
assert_greater(neighbors[0].shape[0], 0)
# All distances to points in the results of the radius query should
# be less than mean_dist
distances, neighbors = lshf.radius_neighbors(query,
radius=mean_dist,
return_distance=True)
assert_array_less(distances[0], mean_dist)
# Multiple points
n_queries = 5
queries = X[rng.randint(0, n_samples, n_queries)]
distances, neighbors = lshf.radius_neighbors(queries,
return_distance=True)
# dists and inds should not be 1D arrays or arrays of variable lengths
# hence the use of the object dtype.
assert_equal(distances.shape, (n_queries,))
assert_equal(distances.dtype, object)
assert_equal(neighbors.shape, (n_queries,))
assert_equal(neighbors.dtype, object)
# Compare with exact neighbor search
query = X[rng.randint(0, n_samples)].reshape(1, -1)
mean_dist = np.mean(pairwise_distances(query, X, metric='cosine'))
nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X)
distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist)
distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:59,代码来源:test_approximate.py
示例15: test_consistent_proba
def test_consistent_proba():
a = svm.SVC(probability=True, max_iter=1, random_state=0)
with ignore_warnings(category=ConvergenceWarning):
proba_1 = a.fit(X, Y).predict_proba(X)
a = svm.SVC(probability=True, max_iter=1, random_state=0)
with ignore_warnings(category=ConvergenceWarning):
proba_2 = a.fit(X, Y).predict_proba(X)
assert_array_almost_equal(proba_1, proba_2)
开发者ID:daniel-perry,项目名称:scikit-learn,代码行数:8,代码来源:test_sparse.py
示例16: test_kernel_ridge_singular_kernel
def test_kernel_ridge_singular_kernel():
# alpha=0 causes a LinAlgError in computing the dual coefficients,
# which causes a fallback to a lstsq solver. This is tested here.
pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X)
kr = KernelRidge(kernel="linear", alpha=0)
ignore_warnings(kr.fit)(X, y)
pred2 = kr.predict(X)
assert_array_almost_equal(pred, pred2)
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:8,代码来源:test_kernel_ridge.py
示例17: test_nans
def test_nans():
# Assert that SelectKBest and SelectPercentile can handle NaNs.
# First feature has zero variance to confuse f_classif (ANOVA) and
# make it return a NaN.
X = [[0, 1, 0], [0, -1, -1], [0, 0.5, 0.5]]
y = [1, 0, 1]
for select in (SelectKBest(f_classif, 2), SelectPercentile(f_classif, percentile=67)):
ignore_warnings(select.fit)(X, y)
assert_array_equal(select.get_support(indices=True), np.array([1, 2]))
开发者ID:nelson-liu,项目名称:scikit-learn,代码行数:10,代码来源:test_feature_select.py
示例18: _run_one_hot
def _run_one_hot(X, X2, cat):
# enc = assert_warns(
# DeprecationWarning,
# OneHotEncoder, categorical_features=cat)
enc = OneHotEncoder(categorical_features=cat)
with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
Xtr = enc.fit_transform(X)
with ignore_warnings(category=(DeprecationWarning, FutureWarning)):
X2tr = enc.fit(X).transform(X2)
return Xtr, X2tr
开发者ID:mikebotazzo,项目名称:scikit-learn,代码行数:10,代码来源:test_encoders.py
示例19: test_path_parameters
def test_path_parameters():
X, y = make_sparse_data()
max_iter = 50
n_alphas = 10
clf = ElasticNetCV(n_alphas=n_alphas, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, fit_intercept=False)
ignore_warnings(clf.fit)(X, y) # new params
assert_almost_equal(0.5, clf.l1_ratio)
assert_equal(n_alphas, clf.n_alphas)
assert_equal(n_alphas, len(clf.alphas_))
sparse_mse_path = clf.mse_path_
ignore_warnings(clf.fit)(X.toarray(), y) # compare with dense data
assert_almost_equal(clf.mse_path_, sparse_mse_path)
开发者ID:agamemnonc,项目名称:scikit-learn,代码行数:12,代码来源:test_sparse_coordinate_descent.py
示例20: test_enet_float_precision
def test_enet_float_precision():
# Generate dataset
X, y, X_test, y_test = build_dataset(n_samples=20, n_features=10)
# Here we have a small number of iterations, and thus the
# ElasticNet might not converge. This is to speed up tests
for normalize in [True, False]:
for fit_intercept in [True, False]:
coef = {}
intercept = {}
for dtype in [np.float64, np.float32]:
clf = ElasticNet(alpha=0.5, max_iter=100, precompute=False,
fit_intercept=fit_intercept,
normalize=normalize)
X = dtype(X)
y = dtype(y)
ignore_warnings(clf.fit)(X, y)
coef[('simple', dtype)] = clf.coef_
intercept[('simple', dtype)] = clf.intercept_
assert_equal(clf.coef_.dtype, dtype)
# test precompute Gram array
Gram = X.T.dot(X)
clf_precompute = ElasticNet(alpha=0.5, max_iter=100,
precompute=Gram,
fit_intercept=fit_intercept,
normalize=normalize)
ignore_warnings(clf_precompute.fit)(X, y)
assert_array_almost_equal(clf.coef_, clf_precompute.coef_)
assert_array_almost_equal(clf.intercept_,
clf_precompute.intercept_)
# test multi task enet
multi_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis]))
clf_multioutput = MultiTaskElasticNet(
alpha=0.5, max_iter=100, fit_intercept=fit_intercept,
normalize=normalize)
clf_multioutput.fit(X, multi_y)
coef[('multi', dtype)] = clf_multioutput.coef_
intercept[('multi', dtype)] = clf_multioutput.intercept_
assert_equal(clf.coef_.dtype, dtype)
for v in ['simple', 'multi']:
assert_array_almost_equal(coef[(v, np.float32)],
coef[(v, np.float64)],
decimal=4)
assert_array_almost_equal(intercept[(v, np.float32)],
intercept[(v, np.float64)],
decimal=4)
开发者ID:allefpablo,项目名称:scikit-learn,代码行数:52,代码来源:test_coordinate_descent.py
注:本文中的sklearn.utils.testing.ignore_warnings函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论