• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python config.options函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中stanza.research.config.options函数的典型用法代码示例。如果您正苦于以下问题:Python options函数的具体用法?Python options怎么用?Python options使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了options函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: main

def main():
    options = config.options(read=True)

    app = wx.App()  # NOQA: wx needs an App even if we're only showing a few modal dialogs

    this_output = html_report.get_output(options.run_dir, options.split)
    this_insts = get_trial_data(this_output, options.test_size, options.run_dir)

    if options.compare_dir:
        compare_output = html_report.get_output(options.compare_dir, options.split)
        compare_insts = get_trial_data(compare_output, options.test_size, options.run_dir)
    else:
        compare_insts = []

    all_insts = this_insts + compare_insts
    random.shuffle(all_insts)

    human = HumanListener()
    human.train(all_insts)

    m = [metrics.squared_error]

    test_results = evaluate.evaluate(human, this_insts, split_id='human_eval', metrics=m)
    output.output_results(test_results, options.run_dir)
    if compare_insts:
        test_results = evaluate.evaluate(human, compare_insts,
                                         split_id='human_eval_compare', metrics=m)
        output.output_results(test_results, options.compare_dir)
开发者ID:futurulus,项目名称:colors-in-context,代码行数:28,代码来源:human_eval.py


示例2: evaluate_l1_eval

def evaluate_l1_eval():
    options = config.options(read=True)

    grids_path = os.path.join(options.run_dir, 's0_grids.0.jsons.gz')
    with gzip.open(grids_path, 'rb') as infile:
        grids = [json.loads(line.strip()) for line in infile]
    data_path = os.path.join(options.run_dir, 'data.eval.jsons')
    with open(data_path, 'r') as infile:
        insts = [instance.Instance(**json.loads(line.strip()))
                 for line in infile]

    assert len(grids) == len(insts), '{} != {}'.format(len(grids), len(insts))

    gold_outputs = np.array([inst.output for inst in insts])
    s0 = np.array([[np.array(ss['S0']).T for ss in grid['sets']]
                   for grid in grids])
    l1 = compute_l1(s0, alpha=options.alpha)
    l1_scores = l1[np.arange(l1.shape[0]), gold_outputs].tolist()
    l1_preds = np.argmax(l1, axis=1).tolist()

    m = [metrics.log_likelihood,
         metrics.log_likelihood_bits,
         metrics.perplexity,
         metrics.accuracy]
    learner = DummyLearner(l1_preds, l1_scores)

    results = evaluate.evaluate(learner, insts, metrics=m, split_id='l1_eval',
                                write_data=False)
    output.output_results(results, 'l1_eval')
开发者ID:futurulus,项目名称:colors-in-context,代码行数:29,代码来源:l1_eval.py


示例3: run_listener

    def run_listener(self, listener_class=ListenerLearner, cell='LSTM', tensorboard=True):
        sys.argv = []
        options = config.options()
        options.train_iters = 2
        options.train_epochs = 3
        options.listener_cell = cell
        options.listener = True

        mo = MockOpen(TEST_DIR)
        mgfp = mock_get_file_path(TEST_DIR)
        with mock.patch('stanza.monitoring.summary.open', mo), \
                mock.patch('stanza.monitoring.summary.SummaryWriter', MockSummaryWriter), \
                mock.patch('stanza.research.config.open', mo), \
                mock.patch('stanza.research.config.get_file_path', mgfp):
            listener = listener_class()
            train_data = [instance.Instance('green', (0, 255, 0))]
            listener.train(train_data)
            predictions, scores = listener.predict_and_score(train_data)

        # predictions = [(123, 45, 67)]
        self.assertIsInstance(predictions, list)
        self.assertEqual(len(predictions), 1)
        self.assertEqual(len(predictions[0]), 3)
        self.assertIsInstance(predictions[0][0], Number)
        # scores = [123.456]
        self.assertIsInstance(scores, list)
        self.assertEqual(len(scores), 1)
        self.assertIsInstance(scores[0], float)

        if tensorboard:
            self.check_tensorboard(mo, mgfp, images=True)
开发者ID:futurulus,项目名称:colors-in-context,代码行数:31,代码来源:test_neural.py


示例4: run_speaker

    def run_speaker(self, speaker_class, cell='LSTM', color_repr='buckets',
                    tensorboard=True, images=False):
        sys.argv = []
        options = config.options()
        options.train_iters = 2
        options.train_epochs = 3
        options.speaker_cell = cell
        options.speaker_color_repr = color_repr
        options.listener = False

        mo = MockOpen(TEST_DIR)
        mgfp = mock_get_file_path(TEST_DIR)
        with mock.patch('stanza.monitoring.summary.open', mo), \
                mock.patch('stanza.monitoring.summary.SummaryWriter', MockSummaryWriter), \
                mock.patch('stanza.research.config.open', mo), \
                mock.patch('stanza.research.config.get_file_path', mgfp):
            speaker = speaker_class()
            train_data = [instance.Instance((0, 255, 0), 'green')]
            speaker.train(train_data)
            predictions, scores = speaker.predict_and_score(train_data)

        # predictions = ['somestring']
        self.assertIsInstance(predictions, list)
        self.assertEqual(len(predictions), 1)
        self.assertIsInstance(predictions[0], basestring)
        # scores = [123.456]
        self.assertIsInstance(scores, list)
        self.assertEqual(len(scores), 1)
        self.assertIsInstance(scores[0], float)

        if tensorboard:
            self.check_tensorboard(mo, mgfp, images=images)
开发者ID:futurulus,项目名称:colors-in-context,代码行数:32,代码来源:test_neural.py


示例5: __init__

    def __init__(self):
        options = config.options()
        self.game_config = cards_config.new(options.game_config)

        self.viewer = None

        self.verbosity = 4

        # One action for each player
        player = spaces.Discrete(len(ACTIONS))
        # should this be spaces.Tuple((player, player)) for 2 players?
        self.action_space = spaces.Tuple([player for _ in range(MAX_BATCH_SIZE)])
        # One board for walls, one for card observations, one for player location
        board = spaces.Box(np.zeros(MAX_BOARD_SIZE), np.ones(MAX_BOARD_SIZE))
        language_player = spaces.Box(np.array(0.), np.array(1.))
        language = spaces.Tuple([language_player for _ in range(self.game_config.num_players - 1)])
        hand = spaces.Box(np.zeros((3, len(RANKS), len(SUITS))),
                          np.ones((3, len(RANKS), len(SUITS))))
        floor = spaces.Box(np.zeros((len(RANKS), len(SUITS))),
                           np.ones((len(RANKS), len(SUITS))))
        all_obs = (board, board, board, hand, floor, language)
        self.observation_space = spaces.Tuple([e
                                               for _ in range(MAX_BATCH_SIZE)
                                               for e in all_obs])

        self.clear_boards()
        import world
        self.default_world = world.CardsWorld(all_transcripts()[0])

        self._seed()
开发者ID:futurulus,项目名称:rl-cards,代码行数:30,代码来源:cards_env.py


示例6: write_metrics

def write_metrics():
    options = config.options(read=True)

    for split in options.splits:
        output = html_report.get_output(options.run_dir, split)
        for m in options.metrics:
            write_metric_for_split(output, options.run_dir, split, m)
开发者ID:anoidgit,项目名称:color-describer,代码行数:7,代码来源:output_metrics.py


示例7: output_sample

def output_sample(model):
    options = config.options()
    insts = model.sample_joint_smooth(num_samples=options.num_samples)
    if not options.listener:
        insts = [inst.inverted() for inst in insts]
    html = rsa_fit_data.get_html(insts, title='Agent samples (smoothed prior)')
    config.dump([inst.__dict__ for inst in insts], 'data.sample.jsons', lines=True)
    with config.open('report.sample.html', 'w') as outfile:
        outfile.write(html)
开发者ID:futurulus,项目名称:colors-in-context,代码行数:9,代码来源:sample.py


示例8: train

 def train(self, training_instances, validation_instances='ignored', metrics='ignored'):
     options = config.options()
     for inst in training_instances:
         inp, out = inst.input, inst.output
         if options.listener:
             out = self.vectorize(out)
         else:
             inp = self.vectorize(inp)
         self.counters[inp][out] += 1
开发者ID:futurulus,项目名称:colors-in-context,代码行数:9,代码来源:learners.py


示例9: evaluate_ak_blending

def evaluate_ak_blending():
    options = config.options(read=True)

    grids_path = os.path.join(options.run_dir, 's0_grids.0.jsons.gz')
    with gzip.open(grids_path, 'rb') as infile:
        grids = [json.loads(line.strip()) for line in infile]
    data_path = os.path.join(options.run_dir, 'data.eval.jsons')
    with open(data_path, 'r') as infile:
        insts = [instance.Instance(**json.loads(line.strip()))
                 for line in infile]

    assert len(grids) == len(insts), '{} != {}'.format(len(grids), len(insts))

    gold_outputs = np.array([inst.output for inst in insts])
    l0 = np.array([[np.array(ss['L0']).T for ss in grid['sets']]
                   for grid in grids])
    s0 = np.array([[np.array(ss['S0']).T for ss in grid['sets']]
                   for grid in grids])
    if options.additive:
        ak = compute_additive(l0, s0,
                              bw=options.base_weight,
                              sw=options.speaker_weight,
                              alpha_s1=options.alpha,
                              alpha_l1=options.alpha_l1)
    else:
        ak = compute_ak(l0, s0,
                        bw=options.base_weight,
                        sw=options.speaker_weight,
                        alpha=options.alpha,
                        gamma=options.gamma)
    ak_scores = ak[np.arange(ak.shape[0]), gold_outputs].tolist()
    ak_preds = np.argmax(ak, axis=1).tolist()

    m = [metrics.log_likelihood,
         metrics.log_likelihood_bits,
         metrics.perplexity,
         metrics.accuracy]
    learner = DummyLearner(ak_preds, ak_scores, params={
        'base_weight': options.base_weight,
        'speaker_weight': options.speaker_weight,
        'alpha': options.alpha,
        'alpha_l1': options.alpha_l1,
        'gamma': options.gamma,
        'additive': options.additive,
    })

    split_id = '{}_eval'.format(options.blend_name)
    results = evaluate.evaluate(learner, insts, metrics=m,
                                split_id=split_id,
                                write_data=False)

    output.output_results(results, split_id)

    options_dump = vars(options)
    del options_dump['overwrite']
    del options_dump['config']
    config.dump_pretty(options_dump, split_id + '_config.json')
开发者ID:futurulus,项目名称:colors-in-context,代码行数:57,代码来源:blending.py


示例10: __init__

 def __init__(self):
     import learners
     import cards_env
     options = config.options()
     if options.verbosity >= 4:
         print('Loading speaker')
     self.speaker = learners.new(options.p2_learner)
     self.speaker.load(options.p2_load)
     self.utterances = [None for _ in range(cards_env.MAX_BATCH_SIZE)]
     self.ace_locs = [None for _ in range(cards_env.MAX_BATCH_SIZE)]
开发者ID:futurulus,项目名称:rl-cards,代码行数:10,代码来源:cards_config.py


示例11: tune_queue

def tune_queue(main_fn):
    config.redirect_output()
    options = config.options()

    if any('tune' not in s for s in options.data_source):
        warnings.warn('expected all --data_source\'s to contain "tune", instead got "{}". '
                      'Are you polluting your dev/test set?'.format(options.data_source))
    if 'gpu' in options.device or 'cuda' in options.device:
        warnings.warn('device is "{}". Have you checked that all processes will fit '
                      'on one GPU? (Random GPU assignment has not been implemented '
                      'yet.)'.format(options.device))

    with open(options.tune_config, 'r') as infile:
        tune_options = config.HoconConfigFileParser().parse(infile)

    reg = ProcessRegistry(main_fn, tune_options, options.tune_maximize)

    remaining_random = options.tune_random
    remaining_local = options.tune_local
    if options.tune_local <= 0:
        remaining_local = None

    try:
        reg.start_default()
        while remaining_random > 0 and reg.running_processes < options.tune_max_processes:
            reg.start_random()
            remaining_random -= 1

        while remaining_local > 0 and reg.running_processes < options.tune_max_processes:
            reg.start_local()
            remaining_random -= 1

        while reg.running_processes > 0:
            name, objective = reg.get()
            print('\nTUNE: {:10.3f} {}\n'.format(objective, name[:70]))

            while remaining_random > 0 and reg.running_processes < options.tune_max_processes:
                reg.start_random()
                remaining_random -= 1

            while (remaining_local is None or remaining_local > 0) and \
                    reg.running_processes < options.tune_max_processes:
                try:
                    reg.start_local()
                    if remaining_local is not None:
                        remaining_local -= 1
                except StopIteration:
                    print('no new local search candidates')
                    break
    except KeyboardInterrupt:
        reg.terminate()

    print('')
    print('best result:')
    print('{:10.3f} {}'.format(reg.best_objective, str(reg.best_name)[:70]))
开发者ID:futurulus,项目名称:colors-in-context,代码行数:55,代码来源:tune.py


示例12: generate_html_reports

def generate_html_reports(run_dir=None, compare_dir=None):
    options = config.options(read=True)
    run_dir = run_dir or options.run_dir
    compare_dir = compare_dir or options.compare_dir

    for output, compare, out_path in get_all_outputs(run_dir, options.compare_dir):
        with open(out_path, 'w') as outfile:
            outfile.write(html_report(output, compare, per_token=options.per_token_prob,
                                      only_differing=options.only_differing_preds,
                                      show_all=options.show_all,
                                      show_tokens=options.show_tokens))
开发者ID:futurulus,项目名称:colors-in-context,代码行数:11,代码来源:html_report.py


示例13: test_main

def test_main():
    options = config.options()
    import sys
    print('stdout')
    sys.stderr.write('stderr\n')

    return {}, {
        'eval.perplexity.gmean': (options.speaker_learning_rate +
                                  options.speaker_cell_size +
                                  len(options.speaker_optimizer))
    }
开发者ID:futurulus,项目名称:colors-in-context,代码行数:11,代码来源:tune.py


示例14: reference_game

def reference_game(insts, gen_func, listener=False):
    options = config.options()
    for i in range(len(insts)):
        color = insts[i].output if listener else insts[i].input
        distractors = [gen_func(color) for _ in range(options.num_distractors)]
        answer = rng.randint(0, len(distractors) + 1)
        context = distractors[:answer] + [color] + distractors[answer:]
        ref_inst = (Instance(insts[i].input, answer, alt_outputs=context)
                    if listener else
                    Instance(answer, insts[i].output, alt_inputs=context))
        insts[i] = ref_inst
    return insts
开发者ID:futurulus,项目名称:colors-in-context,代码行数:12,代码来源:color_instances.py


示例15: __init__

 def __init__(self):
     options = config.options()
     self.counters = defaultdict(Counter)
     if options.listener:
         res = options.listener_color_resolution
         hsv = options.listener_hsv
     else:
         res = options.speaker_color_resolution
         hsv = options.speaker_hsv
     self.res = res
     self.hsv = hsv
     self.init_vectorizer()
开发者ID:futurulus,项目名称:colors-in-context,代码行数:12,代码来源:learners.py


示例16: main

def main():
    options = config.options()

    progress.set_resolution(datetime.timedelta(seconds=options.progress_tick))

    train_data = color_instances.SOURCES[options.data_source].train_data(
        listener=options.listener
    )[:options.train_size]
    if options.validation_size:
        assert options.validation_size < len(train_data), \
            ('No training data after validation split! (%d <= %d)' %
             (len(train_data), options.validation_size))
        validation_data = train_data[-options.validation_size:]
        train_data = train_data[:-options.validation_size]
    else:
        validation_data = None
    test_data = color_instances.SOURCES[options.data_source].test_data(
        options.listener
    )[:options.test_size]

    learner = learners.new(options.learner)

    m = [metrics.log_likelihood,
         metrics.log_likelihood_bits,
         metrics.perplexity,
         metrics.aic]
    if options.listener and not isinstance(test_data[0].output, numbers.Integral):
        m.append(metrics.squared_error)
    elif isinstance(test_data[0].output, (tuple, list)):
        m.append(metrics.prec1)
        if test_data[0].output and isinstance(test_data[0].output, basestring):
            m.append(metrics.bleu)
    else:
        m.append(metrics.accuracy)
        if test_data[0].output and isinstance(test_data[0].output, basestring):
            m.append(metrics.bleu)

    if options.load:
        with open(options.load, 'rb') as infile:
            learner.load(infile)
    else:
        learner.train(train_data, validation_data, metrics=m)
        with open(config.get_file_path('model.p'), 'wb') as outfile:
            learner.dump(outfile)

        train_results = evaluate.evaluate(learner, train_data, metrics=m, split_id='train',
                                          write_data=options.output_train_data)
        output.output_results(train_results, 'train')

    test_results = evaluate.evaluate(learner, test_data, metrics=m, split_id='dev',
                                     write_data=options.output_test_data)
    output.output_results(test_results, 'dev')
开发者ID:anoidgit,项目名称:color-describer,代码行数:52,代码来源:run_experiment.py


示例17: output_sample

def output_sample(model):
    options = config.options()
    assert len(options.data_source) == 1, \
        'Only one data source at a time for sampling (got %s)' % options.data_source
    source = options.data_source[0]

    train_insts = color_instances.SOURCES[source].train_data(listener=options.listener)
    test_insts = color_instances.SOURCES[source].test_data(
        options.listener
    )[:options.test_size[0]]

    for output in model.predict(test_insts, random=True):
        print(json.dumps(output))
开发者ID:futurulus,项目名称:colors-in-context,代码行数:13,代码来源:print_samples.py


示例18: reference_game

def reference_game(insts, gen_func, listener=False):
    options = config.options()
    result = []
    for inst in insts:
        color = inst.output if listener else inst.input
        distractors = [gen_func(color) for _ in range(options.num_distractors)]
        answer = rng.randint(0, len(distractors) + 1)
        context = distractors[:answer] + [color] + distractors[answer:]
        ref_inst = (Instance(inst.input, answer, alt_outputs=context)
                    if listener else
                    Instance(answer, inst.output, alt_inputs=context))
        result.append(ref_inst)
    return result
开发者ID:anoidgit,项目名称:color-describer,代码行数:13,代码来源:color_instances.py


示例19: bilingual_unbalanced_train

def bilingual_unbalanced_train(listener=False, suffix='Chinese_filtered'):
    options = config.options()
    num_en_insts = none_if_negative(options.num_en_insts)
    num_zh_insts = none_if_negative(options.num_zh_insts)
    result = []
    en_insts = filtered_train(listener=listener)[:num_en_insts]
    zh_insts = chinese_train(listener=listener, suffix=suffix)[:num_zh_insts]
    for inst in en_insts:
        result.append(bilingual_tag_instance(inst, 'en', listener=listener, unicodify=True))
    for inst in zh_insts:
        result.append(bilingual_tag_instance(inst, 'zh', listener=listener))
    rng.shuffle(result)
    return result
开发者ID:futurulus,项目名称:colors-in-context,代码行数:13,代码来源:color_instances.py


示例20: bilingual_train

def bilingual_train(listener=False, suffix='Chinese'):
    options = config.options()
    num_en_insts = none_if_negative(options.num_en_insts)
    num_zh_insts = none_if_negative(options.num_zh_insts)
    result = []
    en_insts = filtered_train(listener=listener)[:num_en_insts]
    zh_insts = chinese_train(listener=listener, suffix=suffix)[:num_zh_insts]
    if len(en_insts) >= len(zh_insts):
        zh_insts = cycle_shuffled(zh_insts)
    else:
        en_insts = cycle_shuffled(en_insts)
    for e, z in zip(en_insts, zh_insts):
        result.append(bilingual_tag_instance(e, 'en', listener=listener, unicodify=True))
        result.append(bilingual_tag_instance(z, 'zh', listener=listener))
    return result
开发者ID:futurulus,项目名称:colors-in-context,代码行数:15,代码来源:color_instances.py



注:本文中的stanza.research.config.options函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python star_ratings.get_star_ratings_rating_model函数代码示例发布时间:2022-05-27
下一篇:
Python tests.user函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap