本文整理汇总了Python中statistics.stdev函数的典型用法代码示例。如果您正苦于以下问题:Python stdev函数的具体用法?Python stdev怎么用?Python stdev使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了stdev函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _aggregate
def _aggregate(self):
if not self._modified:
return
functions = defaultdict(lambda: defaultdict(list))
for profile in filter(self._validate_profile, self._profiles.values()):
for function, values in profile["functions"].items():
functions[function]["num_calls"].append(values["num_calls"])
functions[function]["total_time"].append(values["total_time"])
functions[function]["cum_time"].append(values["cum_time"])
for function, lists in functions.items():
self._results[function] = Aggregator.Result(
num_calls_median = int(median(lists["num_calls"])),
total_time_mean = mean(lists["total_time"]),
total_time_stdev = stdev(lists["total_time"]),
cum_time_mean = mean(lists["cum_time"]),
cum_time_stdev = stdev(lists["cum_time"]))
run_times = lambda: (p["run_time"] for p in self._profiles.values())
self._summary = Aggregator.Summary(
run_time_mean = mean(run_times()),
run_time_stdev = stdev(run_times()))
self._modified = False
开发者ID:c4fcm,项目名称:CivilServant,代码行数:25,代码来源:perftest.py
示例2: csv_dict_reader
def csv_dict_reader(file_obj):
"""
Read a CSV file using csv.DictReader
"""
reader = csv.DictReader(file_obj, delimiter=',')
num_likes = []
num_comments = []
num_shares = []
for line in reader:
p = int(line["num_likes"])
q = int(line["first_page_comment"])
r = int(line["comments_beyond_pageone"])
num_likes.append(p)
num_comments.append(q)
num_shares.append(r)
mean_num_likes = statistics.mean(num_likes)
stdev_num_likes = statistics.stdev(num_likes)
mean_num_comments = statistics.mean(num_comments)
stdev_num_comments = statistics.stdev(num_comments)
mean_num_shares = statistics.mean(num_shares)
stdev_num_shares = statistics.stdev(num_shares)
covariance_likes = stdev_num_likes / mean_num_likes
covariance_comments = stdev_num_comments / mean_num_comments
covariance_shares = stdev_num_shares / mean_num_shares
w = csv.writer(open("svm_dataset.csv","a"),delimiter=',',quoting=csv.QUOTE_ALL)
w.writerow([mean_num_likes,stdev_num_likes,covariance_likes,mean_num_comments,stdev_num_comments,covariance_comments,mean_num_shares,stdev_num_shares,covariance_shares])
开发者ID:envious777,项目名称:Brand-Valuation-using-Social-Media-Data,代码行数:27,代码来源:save.py
示例3: process_result
def process_result(self, t_frame, r_frame):
print(t_frame, r_frame)
try:
stat_const = float(2.776)
res2 = [] # frame transmission
res3 = [] # throughput
for i in range(int(self.T[0])):
# frame transmission
res2.append(t_frame[i]/r_frame[i])
res3.append(self.F * r_frame[i] / self.R)
# print(res2, res3)
avg_res2 = statistics.mean(res2)
sd2 = statistics.stdev(res2)
dif2 = sd2/math.sqrt(int(self.T[0]))*stat_const
upper_bound2 = avg_res2 + dif2
lower_bound2 = avg_res2 - dif2
avg_res3 = statistics.mean(res3)
sd3 = statistics.stdev(res3)
dif3 = sd3/math.sqrt(int(self.T[0]))*stat_const
upper_bound3 = avg_res3 + dif3
lower_bound3 = avg_res3 - dif3
except ZeroDivisionError:
return float("inf"), float("inf"), float("inf"), 0, 0, 0
return avg_res2, lower_bound2, upper_bound2, avg_res3, lower_bound3, upper_bound3
开发者ID:Hank-TNguyen,项目名称:W16,代码行数:31,代码来源:Simulation.py
示例4: good_stdev
def good_stdev(self, current_offer):
if self.counter < 5:
return False
# array of utilities the opponent would get for their offer
past_utils = [self.utility_for(x) for x in self.opponent_offers]
old_stdev = statistics.stdev(past_utils)
old_mean = statistics.mean(past_utils)
if past_utils[-1] < self.penalty:
return False
new_utils = []
# filter outliers (2 standard deviations above or below)
for u in past_utils:
if old_mean - 2*old_stdev < u < old_mean + 2*old_stdev:
new_utils.append(u)
if len(new_utils) < 2:
return False
# if the utility we get for the offer is greater than the mean + 1 std dev, then return True
offer_utility = self.utility_for(current_offer)
new_stdev = statistics.stdev(new_utils)
new_mean = statistics.mean(new_utils)
return offer_utility > new_mean + new_stdev
开发者ID:nealp9084,项目名称:hw3,代码行数:26,代码来源:door_in_face_negotiator.py
示例5: pCalc
def pCalc (movMat, movNumber, n, reviewers):
xVals = [int(x) for i,x in enumerate(movMat[movNumber][1].split(';')) if i in reviewers]
yVals = [int(x) for i,x in enumerate(movMat[n][1].split(';')) if i in reviewers]
xi = sum(xVals) #get first movie values
average1 = xi/len(reviewers)
stdDev1 = statistics.stdev(xVals)
yi = sum(yVals) #get second movie values
average2 = yi/len(yVals)
stdDev2 = statistics.stdev(yVals)
r = 0 #get r value
newSum = [((x - average1) / stdDev1) * ((y-average2)/stdDev2) for x,y in zip(xVals, yVals)]
r = (1/(len(reviewers)-1))*sum(newSum)
review = [] #append all values to the list
review.append(r)
review.append(average1)
review.append(average2)
review.append(stdDev1)
review.append(stdDev2)
review.append(n)
review.append(len(reviewers))
return review
开发者ID:VoR0220,项目名称:Artificial-Intelligence-Python,代码行数:27,代码来源:hw4.py
示例6: run_simulation
def run_simulation(init_duration, init_stake, samples, player):
""" Run simulation, print the result to stdout
"""
wheel = create_wheel()
table = Table(wheel)
game = RouletteGame(wheel, table)
simulator = Simulator(game, player,
init_duration=init_duration, samples=samples,
init_stake=init_stake)
simulator.gather()
durations = simulator.durations
maxima = simulator.maxima
print(player)
print()
print("Durations")
print(" min :", min(durations))
print(" max :", max(durations))
print(" mean: %.2f" % statistics.mean(durations))
print(" dev : %.2f" % statistics.stdev(durations))
print("Maxima")
print(" min :", min(maxima))
print(" max :", max(maxima))
print(" mean: %.2f" % statistics.mean(maxima))
print(" dev : %.2f" % statistics.stdev(maxima))
开发者ID:yannicklm,项目名称:pyroulette,代码行数:25,代码来源:simulator.py
示例7: replacePearsonPvalueWithZscore
def replacePearsonPvalueWithZscore():
all_sample_data={}
for tissue in tissue_comparison_scores:
for (r,p,sample) in tissue_comparison_scores[tissue]:
all_sample_data[sample] = [] ### populate this dictionary and create sub-dictionaries
break
for tissue in tissue_comparison_scores:
for (r,p,sample) in tissue_comparison_scores[tissue]:
all_sample_data[sample].append(r)
sample_stats={}
all_dataset_rho_values=[]
### Get average and standard deviation for all sample rho's
for sample in all_sample_data:
all_dataset_rho_values+=all_sample_data[sample]
avg=statistics.avg(all_sample_data[sample])
stdev=statistics.stdev(all_sample_data[sample])
sample_stats[sample]=avg,stdev
global_rho_avg = statistics.avg(all_dataset_rho_values)
global_rho_stdev = statistics.stdev(all_dataset_rho_values)
### Replace the p-value for each rho
for tissue in tissue_comparison_scores:
scores = []
for (r,p,sample) in tissue_comparison_scores[tissue]:
#u,s=sample_stats[sample]
#z = (r-u)/s
z = (r-global_rho_avg)/global_rho_stdev ### Instead of doing this for the sample background, do it relative to all analyzed samples
scores.append([r,z,sample])
tissue_comparison_scores[tissue] = scores
开发者ID:wuxue,项目名称:altanalyze,代码行数:32,代码来源:LineageProfiler.py
示例8: calc_evalmetrics
def calc_evalmetrics(self):
"""Calculate evaluation metrics:
Tour Recall, Tour Precision, Tour F1-score, RMSE of POI visit duration
Tour Popularity, Tour Interest, Popularity and Interest Rank
"""
assert(len(self.recommendSeqs) > 0)
# calculate intersection size of recommended POI set and real POI set
intersize = dict()
for k, v in self.recommendSeqs.items():
intersize[k] = len(set(v) & set(self.sequences[k]))
# calculate tour recall
recalls = []
for k, v in intersize.items():
recalls.append(v / len(self.sequences[k]))
# calculate tour precision
precisions = []
for k, v in intersize.items():
precisions.append(v / len(self.recommendSeqs[k]))
# calculate F1-score
f1scores = []
assert(len(recalls) == len(precisions))
for i in range(len(recalls)):
f1scores.append(2 * precisions[i] * recalls[i] / (precisions[i] + recalls[i]))
print('Recall: ', stat.mean(recalls), stat.stdev(recalls))
print('Precision:', stat.mean(precisions), stat.stdev(precisions))
print('F1-score: ', stat.mean(f1scores), stat.stdev(f1scores))
开发者ID:gitter-badger,项目名称:digbeta,代码行数:31,代码来源:ijcai15.py
示例9: mean_dev
def mean_dev(training_set):
'''
Calculates and returns the mean and standard deviation to the classes yes and no of a given training set
'''
class_yes = []
class_no = []
mean_yes = {}
mean_no = {}
dev_yes = {}
dev_no = {}
for key in training_set[0]:
for i in range(len(training_set)):
if training_set[i]['DiabetesClass'] == 'yes':
class_yes.append(training_set[i][key])
else:
class_no.append(training_set[i][key])
if not key == 'DiabetesClass':
mean_yes[key] = statistics.mean(class_yes)
mean_no[key] = statistics.mean(class_no)
dev_yes[key] = statistics.stdev(class_yes)
dev_no[key] = statistics.stdev(class_no)
else:
prob_yes = float(len(class_yes) / len(training_set))
prob_no = float(len(class_no) / len(training_set))
class_yes = []
class_no = []
return mean_yes, mean_no, dev_yes, dev_no, prob_yes, prob_no
开发者ID:pedrotst,项目名称:trab1-ai,代码行数:27,代码来源:old_main.py
示例10: bootstrap_test
def bootstrap_test(self, nsamples=100, noise=0.2):
"""Returns mean and std. dev. of successful recognitions."""
boot = {}
for vec, pat in zip(self.pattern_vectors, self.patterns):
boot[pat] = {"closest": [], "iterations": [], "full_matches": [], "accuracy": []}
for sample in range(nsamples):
recalled, noisy, iterations = self.recall_noisy(vec, noise=noise)
self.show_pattern(noisy, "{}_{}_noisy_{}".format(
noise, pat, sample))
self.show_pattern(recalled, "{}_{}_recalled_{}".format(
noise, pat, sample))
# equal to any patterns?
matches = {}
full_match = None
for vec2, pat2 in zip(self.pattern_vectors, self.patterns):
matches[pat2] = list( \
vec2[0] == recalled[0]).count(True)
if matches[pat2] == vec2.size:
full_match = pat2
boot[pat]["iterations"].append(iterations)
boot[pat]["full_matches"].append(full_match)
boot[pat]["closest"].append(pat == max(matches, key=matches.get))
boot[pat]["accuracy"].append(matches[pat] / vec.size)
boot[pat]["iterations"] = (mean(boot[pat]["iterations"]), stdev(boot[pat]["iterations"]))
boot[pat]["accuracy"] = (mean(boot[pat]["accuracy"]), stdev(boot[pat]["accuracy"]))
count_matches = lambda l: len(list(filter(lambda f: not f is None, l)))
boot[pat]["full_matches"] = count_matches(boot[pat]["full_matches"])
boot[pat]["closest"] = count_matches(boot[pat]["closest"])
return boot
开发者ID:hucal,项目名称:hopfield_tests,代码行数:33,代码来源:tests.py
示例11: addDataToPlt
def addDataToPlt(fig, ax, dates, diff, c = 'c', label="raw", isMultiple=True):
assert len(dates) == len(diff), "Plot and data are of different lenght"
label1 = "average of 3"
label2 = "average of 7"
med3 = [i for i in diff]
med7 = [i for i in diff]
for i in range(3, len(diff) - 4):
if i > 2 and i < len(diff) - 4:
med7[i] = stats.median(diff[i-3:i+3])
if i > 0 and i < len(diff) - 2:
med3[i] = stats.median(diff[i-1:i+2])
marker = "o"
if len(diff) > 200:
marker = "."
if not isMultiple:
if len(diff) > 1 and stats.stdev(diff) > 0.1:
logger.error("Why do you have a high stdev?" + str(stats.stdev(diff)))
marker = "x"
ax.plot_date(dates, diff, c, xdate=True, marker = marker, linestyle="", label=label)
if isMultiple:
ax.plot_date(dates, med3, 'b', xdate=True, marker = ".", linestyle="", label=label1)
ax.plot_date(dates, med7, 'r', xdate=True, marker = ".", linestyle="", label=label2)
ax.xaxis.set_major_locator(matplotlib.dates.HourLocator())
ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%H:00"))
ax.xaxis.set_minor_locator(matplotlib.dates.MinuteLocator())
ax.autoscale_view()
fig.autofmt_xdate()
ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
开发者ID:nibrivia,项目名称:atlas,代码行数:31,代码来源:graph.py
示例12: model_analysis
def model_analysis(x, x_matrix, y, line, y_hat, b):
n = len(x) # number of samples
s_x = stats.stdev(x) # standard deviation of x values
s_y = stats.stdev(y) # standard deviation of y values
s2_x = stats.variance(x) # variance of x values
s2_y = stats.variance(y) # variance of y values
s_xy = b * s2_x # covariance of VM
mad_temp = 0
SSE = 0
for i in range(len(y)):
temp = abs(y[i] - y_hat[i])
mad_temp += temp
SSE += temp**2 # sum of squares for error
MAD = mad_temp / n
s_err = math.sqrt(SSE / (n - 2)) # standard error of estimate
s_b = s_err / math.sqrt((n - 1) * s2_x)
r = s_xy / (s_x * s_y) # sample coefficient of correlation
R_2 = line.score(x_matrix, y) # coefficient of determination
R_2calc = s_xy**2 / (s2_x * s2_y)
t = b / s_b # t-value for slope assuming true slope = 0
f1.write('\nSkew = ' + str(b) + '\n')
f1.write('Coefficient of correlation (r) = ' + str(r) + '\n')
#f1.write('Coefficient of determination (R^2) via scikit = ' + str(R_2) + '\n')
f1.write('Coefficient of determination (R^2) calculate = ' + str(R_2calc) + '\n')
f1.write('Test statistic for clock skew (t) = ' + str(t) + '\n')
f1.write('Mean Absolute Deviation (MAD) = ' + str(MAD) + '\n')
f1.write('Sum of Squares for Forecast Error (SSE) = ' + str(SSE) + '\n')
return
开发者ID:cjwasek,项目名称:Traffic-Analysis-Project,代码行数:32,代码来源:SingleVM_Anal_v2.py
示例13: main
def main(y):
print("Give me",y,"numbers")
r = int(input())
numbers =[]
while len(numbers) < y:
numbers.append(r)
if len(numbers) < y:
r = int(input("Give me another number"))
print (numbers)
#sum of the 10 numbers
def function(x):
name = x
var = 0
for i in numbers:
var += i
result = var/len(numbers)
if name == 1:
return var
else:
return result
#Paul´s blog idea -->https://pololarinette.wordpress.com/2015/10/15/wsq10-lists/
#Standar deviation
import statistics
statistics.stdev(numbers)
print("The sum of the",y,"numbers is",function(1))
print("The average of the",y,"numbers is",function(2))
print("The stardart deviation is",statistics.stdev(numbers))
开发者ID:Jocapear,项目名称:TC1014,代码行数:28,代码来源:WSQ10.py
示例14: cmp
def cmp(tweet1_counts1, tweet2_counts2):
(tweet1, counts1) = tweet1_counts1
(tweet2, counts2) = tweet2_counts2
"1. Из твитов с разным количеством элементов списков более информативен тот, в котором элементов больше"
if sum(counts1) > sum(counts2):
return -1
elif sum(counts2) > sum(counts1):
return 1
"""
2. Из твитов с одинаковой суммой количеств элементов список выбираем тот, где количества элементов более
сбалансированы (например, [1, 1] лучше, чем [2, 0])
"""
std1 = statistics.stdev(counts1)
std2 = statistics.stdev(counts2)
if std1 < std2:
return -1
elif std2 < std1:
return 1
"И, наконец, наиболее информативен твит большей длины"
if len(tweet1) > len(tweet2):
return -1
elif len(tweet2) > len(tweet1):
return 1
return 0
开发者ID:themylogin,项目名称:twitter-overkill,代码行数:28,代码来源:utils.py
示例15: bench_throughput_latency
def bench_throughput_latency(samples=3, max_rsd=0.1,
*args, **kwargs):
while True:
throughputs = []
latencies = []
iteration = 1
errors = 0
while iteration <= samples:
sys.stdout.write(' [*] Iteration %d/%d\r' % (iteration,samples))
sys.stdout.flush()
try:
bench = Benchmark(*args, **kwargs)
bench.run()
throughputs.append(bench.throughput)
latencies.append(bench.latency)
iteration += 1
except Exception as e:
errors += 1
if errors >= samples:
raise
print(' [!] Iteration %d failed: %s\n%s' % \
(iteration, str(type(e)), str(e)))
mean_throughput = statistics.mean(throughputs)
mean_latency = statistics.mean(latencies)
stdev_throughput = statistics.stdev(throughputs)
stdev_latency = statistics.stdev(latencies)
rsd_throughput = stdev_throughput/mean_throughput
rsd_latency = stdev_latency/mean_latency
if rsd_throughput > max_rsd or rsd_latency > max_rsd:
sys.stderr.write(' [!] Discarding experiment: '+\
'throughput RSD %.2f %%, latency RSD %.2f %%\n' %\
(rsd_throughput*100, rsd_latency*100))
continue
return (mean_throughput, mean_latency,
rsd_throughput, rsd_latency)
开发者ID:mtth-bfft,项目名称:muslkl,代码行数:35,代码来源:bench_memcached_throughput_latency.py
示例16: extract_results
def extract_results(input, out):
header = ['fft_type', 'n_threads', 'n_points', 'n_iterations',
'Throughput', 'Stdev']
records = []
for dirs, subdirs, files in os.walk(input):
for file in files:
if ('.stderr' not in file):
continue
l = []
threads = string_between(file, 'n_thr', '.')
points = string_between(file, 'n_p', 'n_i')
iters = string_between(file, 'n_i', 'n_thr')
exe = string_between(file, '', '-bench')
#implementation = dirs.split('/')[-2]
for line in open(os.path.join(dirs, file), 'r'):
if 'Throughput' in line:
temp = string_between(line, ':', 'M')
l.append(float(temp.strip()))
if l:
records.append([exe, threads, points, iters,
stat.mean(l), stat.stdev(l)])
print file
percent = 100.0 * stat.stdev(l) / stat.mean(l)
if percent > 10:
print "The previous file has %.2f %% error" % percent
else:
print "I found an empty file called %s" % file
records.sort(key=lambda a: (a[0], int(a[1]), int(a[2]), int(a[3])))
t = PrettyTable(header)
t.align = 'l'
t.border = False
for r in records:
t.add_row(r)
with open(out, 'w') as f:
f.writelines(str(t) + '\n')
开发者ID:kiliakis,项目名称:cpp-benchmark,代码行数:35,代码来源:extract-throughput.py
示例17: test
def test():
n = [random.random() for _ in range(20)]
bag = Bag()
for i in n:
bag.add(i)
print(bag)
for i in bag:
print(i)
total = 0
for item in bag:
total += item
mean = total / bag.size()
total = 0
for item in bag:
total += (item - mean)**2
std = math.sqrt(total / (bag.size() - 1))
print('calculated mean is {}'.format(mean))
print('calculated stdev is {}'.format(std))
print('stdlib mean is {}'.format(statistics.mean(n)))
print('stdlib stdev is {}'.format(statistics.stdev(n)))
assert(round(mean, 10) == round(statistics.mean(n), 10))
assert(round(std, 10) == round(statistics.stdev(n), 10))
开发者ID:alekseyrybalkin,项目名称:cs-again,代码行数:27,代码来源:bag.py
示例18: main
def main(total_rolls=20000):
rolls_list = rolls(total_rolls, 1, 6)
sliced_sum20 = sliced_sums(20, rolls_list)
sums20 = sums(sliced_sum20, -20)
roll_count20 = lens(sliced_sum20)
sliced_sum10k = sliced_sums(10000, rolls_list)
sums10k = sums(sliced_sum10k, -10000)
roll_count10k = lens(sliced_sum10k)
paired_sums = [(20, sums20), (10000, sums10k)]
paired_rolls = [(20, roll_count20), (10000, roll_count10k)]
answers("Mean of the sum - {0} when M is {0}:",
paired_sums, lambda s: statistics.mean(s))
answers("Mean of the number of rolls when M is {0}:",
paired_rolls, lambda s: statistics.mean(s))
answers("Standard deviation of the sum - {0} when M is {0}:",
paired_sums, lambda s: statistics.stdev(s))
answers("Standard deviation of the number of rolls when M is {0}:",
paired_rolls, lambda s: statistics.stdev(s))
answers("\nView of the rolls summing to {0}\n" +
format("Count", ">7") + " " + format("Sum", ">7") + " Rolls\n",
[(20, sliced_sum20), (10000, sliced_sum10k)],
lambda ss: ''.join(
format(len(s[1]), ">7") + " " + format(s[0], ">7") + " " +
format(s[1]) + "\n" for s in ss)
, sep=''
)
开发者ID:dlamblin,项目名称:NYC-taxi-Data-Incubator-challenge,代码行数:27,代码来源:rolls.py
示例19: get_result
def get_result(self, raw_fname):
node_flow_num_vs_performance = {}
in_file = open(raw_fname, 'r')
lines = in_file.readlines()
in_file.close()
for line in lines:
#get each value
line = line[1:-2]
#print(line)
items = line.split(', ')
if len(items) != 9:
continue
num_nodes = int(items[0])
num_tasks = int(items[1])
num_candidate_pair = int(items[2])
max_node_flows = int(items[3])
num_pairs = int(items[4])
latency = int(items[5])
flow_avg_latency = int(items[7])
max_flow_latency = int(items[8])
if max_node_flows not in node_flow_num_vs_performance:
node_flow_num_vs_performance[max_node_flows] = []
node_flow_num_vs_performance[max_node_flows].append(
(num_nodes, num_tasks, num_candidate_pair, num_pairs, latency, flow_avg_latency, max_flow_latency)
)
#statistics results
for max_node_flows, tuples in sorted(node_flow_num_vs_performance.items(), key=lambda item: item[0]):
list_num_tasks = []
list_num_candidate_pair = []
list_num_pairs = []
list_latency = []
list_flow_avg_latency = []
all_rounds_max_flow_latency = 0
for one_tuple in tuples:
list_num_tasks.append(one_tuple[1])
list_num_candidate_pair.append(one_tuple[2])
list_num_pairs.append(one_tuple[3])
list_latency.append(one_tuple[4])
list_flow_avg_latency.append(one_tuple[5])
all_rounds_max_flow_latency = max(all_rounds_max_flow_latency, int(one_tuple[6]))
avg_num_tasks = statistics.mean(list_num_tasks)
avg_num_candidate_pair = statistics.mean(list_num_candidate_pair)
avg_num_pairs = statistics.mean(list_num_pairs)
avg_latency = statistics.mean(list_latency)
avg_flow_avg_latency = statistics.mean(list_flow_avg_latency)
stdv_num_tasks = 0
stdv_num_candidate_pair = 0
stdv_num_pairs = 0
stdv_latency = 0
stdv_flow_avg_latency = 0
if len(tuples) > 1:
stdv_num_tasks = statistics.stdev(list_num_tasks)
stdv_num_candidate_pair = statistics.stdev(list_num_candidate_pair)
stdv_num_pairs = statistics.stdev(list_num_pairs)
stdv_latency = statistics.stdev(list_latency)
stdv_flow_avg_latency = statistics.stdev(list_flow_avg_latency)
print(max_node_flows, avg_num_tasks, stdv_num_tasks, avg_num_candidate_pair, stdv_num_candidate_pair, avg_num_pairs, stdv_num_pairs, avg_latency, stdv_latency, avg_flow_avg_latency, stdv_flow_avg_latency, all_rounds_max_flow_latency)
开发者ID:cfdream,项目名称:MonitorPlacement,代码行数:60,代码来源:get_nodeFlowNum_vs_performance_forGreedy.py
示例20: main
def main():
dailymotion = acquire_dailymotion()
print "Dailymotion"
print "total videos: " + str(len(dailymotion[0]))
print "mean views: " + str(statistics.mean(dailymotion[0]))
print "median views: " + str(statistics.median(dailymotion[0]))
print "STD views: " + str(statistics.stdev(dailymotion[0]))
print "Average Date: " + str(convert_to_datetime(statistics.mean(dailymotion[1])))
print "Median Date: " + str(convert_to_datetime(statistics.median(dailymotion[1])))
print "Average Lengths: " + str(statistics.mean(dailymotion[2]))
print "Median Lengths: " + str(statistics.median(dailymotion[2]))
print "STD Lengths: " + str(statistics.stdev(dailymotion[2]))
print "Top 20 most used word in title: "
word_count_dailymotion("title")
print "Top 20 most used word in description:"
word_count_dailymotion("description")
youtube = acquire_youtube()
print "YouTube"
print "total videos: " + str(len(youtube[0]))
print "mean views: " + str(statistics.mean(youtube[0]))
print "median views: " + str(statistics.median(youtube[0]))
print "STD views: " + str(statistics.stdev(youtube[0]))
print "Average Date: " + str(convert_to_datetime(statistics.mean(youtube[1])))
print "Median Date: " + str(convert_to_datetime(statistics.median(youtube[1])))
print "Video Definition: " , str(statistics.mode(youtube[2])) , " - " , str(youtube[2].count(statistics.mode(youtube[2]))) ,"/" , str(len(youtube[2]))
print "Average Lengths: " + str(statistics.mean(youtube[3]))
print "Median Lengths: " + str(statistics.median(youtube[3]))
print "STD Lengths: " + str(statistics.stdev(youtube[3]))
print "Top 20 most used word in title: "
word_count_yt("title")
print "Top 20 most used words in description: "
word_count_yt("description")
client.close()
开发者ID:mavanes,项目名称:CS-454,代码行数:33,代码来源:dataStatistics.py
注:本文中的statistics.stdev函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论