• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python api.qqplot函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中statsmodels.api.qqplot函数的典型用法代码示例。如果您正苦于以下问题:Python qqplot函数的具体用法?Python qqplot怎么用?Python qqplot使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了qqplot函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: plotFit

def plotFit(fit):
  """Create's the 2x2 panel of plots that plot(fit) would create in R"""
  resid = fit.resid
  mu = resid.mean()
  std = resid.std(axis=0)

  #had to write my own normalize function
  def _normalize(resid):
      return (resid-mu)/std
  norm_resid = resid.apply(_normalize)


  f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row')

  ax1.scatter(fit.fittedvalues, fit.resid)
  ax1.set_xlabel('Fitted Values')
  ax1.set_ylabel('Residuals')
  ax1.set_title('Residuals vs Fitted')


  sm.qqplot(fit.resid, ax=ax2)
  ax2.set_title('QQ plot')

  ax3.scatter(fit.fittedvalues, norm_resid)
  ax3.set_xlabel('Fitted Values')
  ax3.set_ylabel('Standardized Residuals')
  ax3.set_title('Scale-Location')

  sm.graphics.influence_plot(fit, ax=ax4, criterion="cooks")

  plt.show()
开发者ID:tejaykodali,项目名称:StatisticalLearning,代码行数:31,代码来源:plotFit.py


示例2: return_qqplot

def return_qqplot(data):
    ''' Generates a Q-Q plot of the returns.'''
    plt.figure(figsize=(9, 5))
    sm.qqplot(data['returns'], line='s')
    plt.grid(True)
    plt.xlabel('theoretical quantiles')
    plt.ylabel('sample quantiles')
开发者ID:jgerardsimcock,项目名称:ml4t,代码行数:7,代码来源:GBM.py


示例3: plot_single_peak

def plot_single_peak(peak, ff = False, num_bins = 50, qq = scipy.stats.norm):
    '''Plotte fuer einen Peak das Histogramm sowie qq-Plot zur Verteilung qq
    Besser plot_simlist verwenden, wenn nicht nur gezielt ein Peak angeschaut werden soll, oder Histogrammdarstellung erwuenscht'''
    data = peak
    # Falls from_file gewaehlt, oeffne file
    if ff:
        with open (peak, 'rb') as daten:
            data = pickle.load(daten)
    #Normales Hist plotten
    n, bins, patches = plt.hist(data.times, num_bins, normed=1, alpha=0.5 )
    plt.suptitle("params:" + str(data.params))
    # Jetzt noch ein qq-Plot
    x = np.arange(1, 250, 0.5)
    if qq == scipy.stats.invgauss:
        mu, loc, scale =  scipy.stats.invgauss.fit(data.times)
        logging.log(20, "ig-paramss, %s, %s, %s", str(mu), str(loc), str(scale))
        plt.plot(x,scipy.stats.invgauss.pdf(x,mu, loc, scale))
        logging.log(20,'skew, %s', str(scipy.stats.skew(data.times)))
        sm.qqplot(np.array(data.times), qq, distargs=(mu,),  line = 'r')
        plt.suptitle("params:" + str(data.params) + " qq-Plot mit Normalverteilung" )
    elif qq == scipy.stats.norm:
        sm.qqplot(np.array(data.times), qq, line='r')
        plt.suptitle("params:" + str(data.params) + " qq-Plot mit Inverser Gauss Verteilung: ")
    else: 
        print("not yet implemented, distribution:", qq)
    plt.show()
开发者ID:Syssy,项目名称:diplom,代码行数:26,代码来源:my_plottings_2p.py


示例4: hist

def hist(request, sym):
    """create a histogram plot"""
    data = Data(syms=[sym], start=start)
        
    r = data.panel.r.copy()
    r = r.dropna()
    
    fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(12, 7))
    
    ax = axes[0,0]
    ax.hist(r[sym].values, bins=30)
    r.plot(kind="kde", ax=ax,grid=True)
    r.boxplot(ax=axes[0,1],grid=True)
    r.plot(kind="kde", ax=axes[1,0],grid=True)
    sm.qqplot(r[sym], line='r', fit=True, ax=axes[1,1])
    
    r['mean'] = pandas.rolling_mean(r[sym], 12)
    r['std'] = pandas.rolling_std(r[sym], 12)
    r['cum_ret'] = r[sym].cumsum()
    r[['mean', 'std']].plot(ax=axes[0,2], grid=True, rot=45)
    
    r[['cum_ret']].plot(ax=axes[1,2], grid=True, rot=45)
    
    fig.tight_layout()
    
    fig.set_facecolor((1,.8,.6,0))
    canvas = FigureCanvas(fig)
    response = HttpResponse(content_type='image/png')
    canvas.print_png(response)
    return response
开发者ID:sursingh,项目名称:QInvest,代码行数:30,代码来源:views.py


示例5: plot

def plot (sim_liste, histogram_separate, histogram_spec, qq_Plot, fit_qq_Plot, num_bins = 50, vergleich= scipy.stats.invgauss):
    startzeit = time.clock()   
    if histogram_spec:
        print "Erstelle Spektrum"
        fig, ax = plt.subplots()
        fig.suptitle("Laenge: "+str(sim_liste[0].length)+" Anz Teilchen: " +str(sim_liste[1].number)) #TODO, gehe hier davon aus, dass gleiche sim-bedingungen vorliegen
        for sim in sim_liste:
            ax.hist(sim.times, num_bins, alpha=0.5, normed = 1, label = str(sim.params) )
       # plt.show()  
        legend = ax.legend(loc='upper right', shadow=True)

    
    # Je Simulation ein Ausgabefenster mit separatem Histogramm/qq-Plot mit gewählten Params/qq mit automatischem Fit 
    number_stats = sum([histogram_separate, qq_Plot, fit_qq_Plot])
    print number_stats
    if histogram_separate or qq_Plot or fit_qq_Plot:
	print "Erstelle separate Dinge"
	for sim in sim_liste:
	    fig = plt.figure(figsize=(4*number_stats, 4))
            gs1 = gridspec.GridSpec(1, number_stats)
            ax_list = [fig.add_subplot(ss) for ss in gs1]
           
	    akt = 0
	    fig.suptitle("ps, pm"+str(sim.params)+str(round(sim.params[0]-sim.params[1],5)), size = 15)
	    if histogram_separate:
		ax_list[akt].hist(sim.times, num_bins)
		ax_list[akt].set_title("Histogramm")
                akt+=1
                
            #print "hist sep", time.clock()-startzeit
	    if qq_Plot:
                sm.qqplot (np.array(sim.times), scipy.stats.norm,  line = 'r', ax=ax_list[akt])
		ax_list[akt].set_title("qq-Plot; norm!! Params: 0.05")
                akt+=1
            #print 'qq 0.05', time.clock()-startzeit
	    if fit_qq_Plot:
		                
                #mu, loc, scale = scipy.stats.invgauss.fit(sim.times)
                #mean, var = scipy.stats.invgauss.stats(mu, loc, scale, moments='mv')
                #print  "params", sim.params, '(mu, loc, scale), mean, var', round(mu, 5), round(loc, 2), round(scale, 2), '\n',  mean, '\n', var
                
                #sm.qqplot (np.array(sim.times), vergleich, fit = True,  line = 'r', ax=ax_list[akt])
		#ax_list[akt].set_title("qq-Plot mit auto Fit")
                #akt+=1 
                sm.qqplot (np.array(sim.times), vergleich, distargs= (sim.mu, ),  line = 'r', ax=ax_list[akt])
		ax_list[akt].set_title("qq-Plot mit mu:" + str(sim.mu))
                akt+=1
            #print "qq plus rechnen", time.clock()-startzeit                

                #fig.subplots_adjust(top=5.85)
            gs1.tight_layout(fig, rect=[0, 0.03, 1, 0.95]) 
            print time.clock()-startzeit
            #plt.tight_layout()
    plt.show()    
       

   
   
    '''x = np.linspace(0, 2*np.pi, 400)
开发者ID:Syssy,项目名称:Pythonkram,代码行数:59,代码来源:plotkram.py


示例6: plot_single_histqq_ff

def plot_single_histqq_ff(datei, num_bins=50):
    with open(datei, 'rb') as daten:
        sim = pickle.load(daten)
        n, bins, patches = plt.hist(sim.times, num_bins, normed=1, alpha=0.5 )
        x = np.arange(50000, 250000, 100)
        print "ig-params", scipy.stats.invgauss.fit(sim.times)
        mu, loc, scale =  scipy.stats.invgauss.fit(sim.times)
        plt.plot(x,scipy.stats.invgauss.pdf(x,mu, loc, scale))
        print 'skew', scipy.stats.skew(sim.times)
        
        sm.qqplot(np.array(sim.times), scipy.stats.invgauss, distargs=(mu,),  line = 'r')
开发者ID:Syssy,项目名称:diplom,代码行数:11,代码来源:plotkram.py


示例7: plot_qq_checkout

def plot_qq_checkout():

	path = './qq_checkout'
	if os.path.exists(path) == False:
		os.mkdir(path)

	global number_attribute_remove_lost_arr
	for k, v in number_attribute_remove_lost_arr.iteritems():
		sm.qqplot(np.array(v), line='r')
		#plt.xlabel(k)
		plt.title(k)
		plt.grid(True)
		#plt.show()
		plt.savefig(path + '/' + k + '.png')
		plt.close()
开发者ID:LiangYang2836,项目名称:DataMing,代码行数:15,代码来源:main.py


示例8: plot_ic_qq

def plot_ic_qq(ic, theoretical_dist=stats.norm, ax=None):
    """
    Plots Spearman Rank Information Coefficient "Q-Q" plot relative to
    a theoretical distribution.

    Parameters
    ----------
    ic : pd.DataFrame
        DataFrame indexed by date, with IC for each forward return.
    theoretical_dist : scipy.stats._continuous_distns
        Continuous distribution generator. scipy.stats.norm and
        scipy.stats.t are popular options.
    ax : matplotlib.Axes, optional
        Axes upon which to plot.

    Returns
    -------
    ax : matplotlib.Axes
        The axes that were plotted on.
    """

    ic = ic.copy()

    num_plots = len(ic.columns)

    v_spaces = ((num_plots - 1) // 3) + 1

    if ax is None:
        f, ax = plt.subplots(v_spaces, 3, figsize=(18, v_spaces * 6))
        ax = ax.flatten()

    if isinstance(theoretical_dist, stats.norm.__class__):
        dist_name = 'Normal'
    elif isinstance(theoretical_dist, stats.t.__class__):
        dist_name = 'T'
    else:
        dist_name = 'Theoretical'

    for a, (period_num, ic) in zip(ax, ic.iteritems()):
        sm.qqplot(ic.replace(np.nan, 0.).values, theoretical_dist, fit=True,
                  line='45', ax=a)
        a.set(title="{} Period IC {} Dist. Q-Q".format(
              period_num, dist_name),
              ylabel='Observed Quantile',
              xlabel='{} Distribution Quantile'.format(dist_name))

    return ax
开发者ID:femtotrader,项目名称:alphalens,代码行数:47,代码来源:plotting.py


示例9: plot_model

def plot_model(prediction, y, x):
    fig, axs = sns.plt.subplots(2, 2, figsize=(16, 10))
    axs = axs.flatten()

    resid = pd.Series(y - prediction, index=y.index, name='Residuals')

    resid.hist(bins=40, ax=axs[0])
    axs[0].set_xlabel('Residuals')
    sm.qqplot(resid, line='q', ax=axs[1])
    axs[1].set_xlabel('Residuals')
    tbpd.hist2d(resid, prediction, ax=axs[2],
                vlabel='Residuals', hlabel='Predicted value',
                integer_aligned_bins=True)
    tbpd.hist2d(y, prediction, ax=axs[3],
                vlabel='True value', hlabel='Predicted value',
                integer_aligned_bins=True, sqrt=True)
    fig.tight_layout()
开发者ID:NTAWolf,项目名称:mscpublic,代码行数:17,代码来源:prediction.py


示例10: q_q_plot

def q_q_plot(filepath, parameter):
    df = pandas.read_csv(filepath)
    array = df[parameter]
    try:
        fig = sm.qqplot(array, scipy.stats.t, fit=True, line='45')
        plt.show()
    except:
        print "There was an error."
开发者ID:mwytock0812,项目名称:ny_subway,代码行数:8,代码来源:shapiro_wilk.py


示例11: test_qqplot

def test_qqplot():
    #just test that it runs
    data = sm.datasets.longley.load()
    data.exog = sm.add_constant(data.exog, prepend=False)
    mod_fit = sm.OLS(data.endog, data.exog).fit()
    res = mod_fit.resid
    fig = sm.qqplot(res, line='r')

    plt.close('all')
开发者ID:AnaMP,项目名称:statsmodels,代码行数:9,代码来源:test_gofplots.py


示例12: test_qqplot

def test_qqplot():
    #just test that it runs
    data = sm.datasets.longley.load()
    data.exog = sm.add_constant(data.exog)
    mod_fit = sm.OLS(data.endog, data.exog).fit()
    res = mod_fit.resid
    fig = sm.qqplot(res)

    plt.close(fig)
开发者ID:CRP,项目名称:statsmodels,代码行数:9,代码来源:test_gofplots.py


示例13: plot

def plot(file_name,negative_control_gRNAs=None,wald_only=False):
    data=open(file_name,'rb')
    short_file_name=file_name[:file_name.index(".gene_summary.txt")]
    data.readline()
    permute_p_value_list=[]
    wald_p_value_list=[]
    beta_value_list=[]

    if negative_control_gRNAs!=None:
        negative_control_permute_p_value_list=[]
        negative_control_wald_p_value_list=[]
        negative_control_beta_value_list=[]


    for line in data:
        elements=line.decode().strip().split("\t")
        if negative_control_gRNAs!=None and elements[0] in negative_control_gRNAs:
            negative_control_beta_value_list.append(float(elements[2]))
            if wald_only==True:
                negative_control_wald_p_value_list.append(float(elements[4]))
            else:
                negative_control_permute_p_value_list.append(float(elements[4]))
                negative_control_wald_p_value_list.append(float(elements[6]))
        else:
            beta_value_list.append(float(elements[2]))
            if wald_only==True:
                wald_p_value_list.append(float(elements[4]))
            else:
                permute_p_value_list.append(float(elements[4]))
                wald_p_value_list.append(float(elements[6]))
    beta_value_list=[x for x in beta_value_list if str(x) != 'nan' and abs(x)<3]
    wald_p_value_list=[x for x in wald_p_value_list if str(x) != 'nan']
    if negative_control_gRNAs!=None:
        negative_control_beta_value_list=[x for x in beta_value_list if str(x) != 'nan' and abs(x)<3]
        negative_control_wald_p_value_list=[x for x in wald_p_value_list if str(x) != 'nan']

    if wald_only!=True:
        permute_p_value_list=[x for x in permute_p_value_list if str(x) != 'nan']
        stats.probplot(permute_p_value_list, dist="uniform",plot=pylab)
        pylab.savefig("QQplot of permute_p value %s.png" %short_file_name)
        pylab.close()

    pylab.hist(beta_value_list,bins=1000)
    pylab.savefig("Hist of beta value %s.png" %short_file_name)
    pylab.close()

    #stats.probplot(wald_p_value_list, dist="uniform",plot=pylab)
    fig=sm.qqplot(np.array(wald_p_value_list),stats.uniform,fit=True, line='45')
    pylab.xlim(0,1)
    pylab.ylim(0,1)
    #fig.set_xlim(0,1)
    pylab.savefig("QQplot of wald_p value %s.png" %short_file_name)
    pylab.close()
    '''
开发者ID:yarker,项目名称:MAGeCK_Repo,代码行数:54,代码来源:pvalue_beta_plot.py


示例14: qqPlot

 def qqPlot(self):
     """ Plots sample signals against theorethical distribution"""
     import statsmodels.api as sm #pandas, patsy
     import matplotlib.pyplot as plt
     data = self.array.probes[:, 2 + self.number]  # add log2
     plt.figure(self.number)
     fig = sm.qqplot(data)
     plt.xlabel('Theoretical quantiles')
     plt.ylabel('Sample quantiles')
     plt.title('Probe intensities for %s' % (self.name))
     plt.savefig("%s_qqprob.png" % (self.name))
开发者ID:afrendeiro,项目名称:nimblegen_parser,代码行数:11,代码来源:nimbleParser.py


示例15: tsplot

    def tsplot(y, lags=None, figsize=(10, 8), style='bmh'):
        if not isinstance(y, pd.Series):
            y = pd.Series(y)
        with plt.style.context(style):    
            fig = plt.figure(figsize=figsize)
            #mpl.rcParams['font.family'] = 'Ubuntu Mono'
            layout = (3, 2)
            ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
            acf_ax = plt.subplot2grid(layout, (1, 0))
            pacf_ax = plt.subplot2grid(layout, (1, 1))
            qq_ax = plt.subplot2grid(layout, (2, 0))
            pp_ax = plt.subplot2grid(layout, (2, 1))

            y.plot(ax=ts_ax)
            ts_ax.set_title('Time Series Analysis Plots')
            smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.5)
            smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.5)
            sm.qqplot(y, line='s', ax=qq_ax)
            qq_ax.set_title('QQ Plot')        
            scs.probplot(y, sparams=(y.mean(), y.std()), plot=pp_ax)

            plt.tight_layout()
        return
开发者ID:QuantLet,项目名称:SFE_class_2017,代码行数:23,代码来源:SFERWSimu.py


示例16: print_qqplot_and_residuals_plot

def print_qqplot_and_residuals_plot(model):
    # qq-plot
    ax1 = plt.subplot(1, 3, 1)
    qq_plot = sm.qqplot(model.resid, line = 'r', ax = ax1)
    
    # Residuals plot
    ax2 = plt.subplot(1, 3, 2)
    stdres = pandas.DataFrame(model.resid_pearson)
    residuals_plot = plt.plot(stdres, 'o', ls = 'None')
    plt.axhline(y = 0, color = 'r')
    plt.ylabel('Standarized Residual')
    plt.xlabel('Observation Number')
    
    plt.show()
开发者ID:MColosso,项目名称:Forest-Fires,代码行数:14,代码来源:Forest+Fires+-+week+3.py


示例17: mult_regression

def mult_regression(wine_set):
    # center quantitative IVs for regression analysis
    w = wine_set['quality']
    wine_set = wine_set - wine_set.mean()
    wine_set['quality'] = w

    print ("OLS multivariate regression model")
    # first i have run with all columns; than chose the most significant for each wine set and rerun:

    if len(wine_set) < 2000:
        # for red
        model1 = smf.ols(
            formula="quality ~ volatile_acidity + chlorides + pH + sulphates + alcohol",
            data=wine_set)
    else:
        # for white
        model1 = smf.ols(
            formula="quality ~ volatile_acidity + density + pH + sulphates + alcohol",
            data=wine_set)

    results1 = model1.fit()
    print(results1.summary())

    # q-q plot for normality
    qq = sm.qqplot(results1.resid, line = 'r')
    plt.show()

    # plot of residuals
    stdres = pd.DataFrame(results1.resid_pearson)
    plt.plot(stdres, 'o', ls = 'None')
    l = plt.axhline(y=0, color = 'r')
    plt.ylabel('Standardized redisual')
    plt.xlabel('Observation number')
    plt.show()

    # # diagnostic plots
    # figure1 = plt.figure(figsize=(12, 8))
    # figure1 = sm.graphics.plot_regress_exog(results1, "alcohol", fig = figure1)
    # plt.show()
    #
    # figure1 = plt.figure(figsize=(12, 8))
    # figure1 = sm.graphics.plot_regress_exog(results1, "sulphates", fig = figure1)
    # plt.show()

    # leverage plot
    figure1 = sm.graphics.influence_plot(results1, size=8)
    plt.show()
开发者ID:ekolik,项目名称:-Python-Analysis_of_wine_quality,代码行数:47,代码来源:regression_modeling.py


示例18: plot_box_resids

def plot_box_resids(fit_model, y_pred, subset=None):
    '''More than you ever wanted to know about your residuals'''
    s_resid = (fit_model.resid - np.mean(fit_model.resid)) /\
               np.var(fit_model.resid)
    if subset:
        s_resid = np.random.choice(s_resid,
                                  replace=False,
                                  size=math.floor(len(s_resid) * subset))
    df = pd.DataFrame(s_resid, columns=['resids'])
    temp_df = pd.DataFrame(y_pred, columns=['target'])
    df = df.join(temp_df)

    if min(y_pred) < -1:
        df['turnout_bucket'] = df['target']\
        .apply(lambda x: int(math.floor(10 * np.exp(x))))
        y = df['target'].apply(lambda x: np.exp(x))
    else:
        df['turnout_bucket'] = df['target']\
        .apply(lambda x: int(math.floor(10 * x)))
        y = df['target']

    posit = sorted(df['turnout_bucket'].unique())

    plt.scatter(y, s_resid, alpha=.2)
    slope, intercept = np.polyfit(y, s_resid, 1)
    plt.plot(y, np.poly1d(np.polyfit(y, s_resid, 1))(y))
    plt.title('Studentized Residuals vs Prediction')
    plt.xlabel('Predicted Value')
    plt.ylabel('Studentized Residual')
    print 'Slope of best fit line: %s' % slope
    plt.show()

    ax1 = df[['resids', 'turnout_bucket']]\
        .boxplot(by='turnout_bucket', positions=posit, widths=.5)
    plt.title('Residuals versus Turnout')
    plt.xlabel('Turnout Bucket')
    plt.ylabel('Studentized Residuals')
    plt.suptitle('')
    plt.show()

    fig = sm.qqplot(s_resid, line='s')
    plt.title('Q-Q Plot')
    plt.show()

    w, p_val = shapiro(s_resid)
    print 'Shapiro-Wilk P_val is %s, larger the better' % p_val

    k, p_val = normaltest(s_resid)
    print 'D’Agostino and Pearson’s P_val is %s, larger the better' % p_val

    k, p_val = kstest(s_resid, 'norm')
    print 'Kolmogorov–Smirnov P_val is %s, larger the better' % p_val

    A, critical, sig = anderson(s_resid)
    print 'Anderson-Darling A2 is %s, smaller the better' % A
    print critical
    print sig

    n, bins, patches = plt.hist(s_resid, 75, normed=1)
    mu = np.mean(s_resid)
    sigma = np.std(s_resid)
    plt.plot(bins, mlab.normpdf(bins, mu, sigma))
    plt.title('Residuals versus a Normal Dist')
    plt.show()

    df['turnout_bucket'].hist(bins=posit, align='left', color='b')
    plt.title('Histogram of Turnout Bucket')
    plt.ylabel('Count')
    plt.xlim(-.5, - .5 + len(posit))

    temp = df[['resids', 'turnout_bucket']].groupby('turnout_bucket').count()
    temp.columns = ['Count']
    plt.show()
    print temp
开发者ID:SGShuman,项目名称:ground_game,代码行数:74,代码来源:build_model.py


示例19: I

reg2 = smf.ols('lifeexpectancy ~ breastcancerper100th_c + I(breastcancerper100th_c**2)', data=sub1).fit()
print (reg2.summary())


####################################################################################
# EVALUATING MODEL FIT
####################################################################################

# adding alcohol consumption
reg3 = smf.ols('lifeexpectancy ~ breastcancerper100th_c + I(breastcancerper100th_c**2) + breastcancerper100th_c', 
               data=sub1).fit()
print (reg3.summary())


#Q-Q plot for normality
fig4=sm.qqplot(reg3.resid, line='r')

# simple plot of residuals
stdres=pandas.DataFrame(reg3.resid_pearson)
plt.plot(stdres, 'o', ls='None')
l = plt.axhline(y=0, color='r')
plt.ylabel('Standardized Residual')
plt.xlabel('Observation Number')


# additional regression diagnostic plots
fig2 = plt.figure(figsize=(12,8))
fig2 = sm.graphics.plot_regress_exog(reg3,  "breastcancerper100th_c", fig=fig2)

# leverage plot
fig3=sm.graphics.influence_plot(reg3, size=8)
开发者ID:marlonsvl,项目名称:multipeRegressionModel,代码行数:31,代码来源:multipleRegressionModel.py


示例20: plot

comb.boxplot(column=[0])


## Q-Q Plot 

##### In statistics, a Q–Q plot ("Q" stands for quantile) is a probability plot, which is a graphical method for comparing two probability distributions by plotting their quantiles against each other. If the two distributions being compared are similar, the points in the Q–Q plot will approximately lie on the line y = x. If the distributions are linearly related, the points in the Q–Q plot will approximately lie on a line, but not necessarily on the line y = x.

# In[266]:

import statsmodels.api as sm


# In[269]:

sm.qqplot(comb[1],line='45')


# In[275]:

os.getcwd()


# In[287]:

for i in np.arange(0,40,1):
    pieces1='histograms/histogram',format(i),'.jpg'
    hist=comb[i].hist()
    fig = hist.get_figure()
    fig.savefig(''.join(pieces1))
    fig.clear()
开发者ID:soumil-jain,项目名称:ipython-notebooks,代码行数:30,代码来源:Kaggle_DataScienceLondon.py



注:本文中的statsmodels.api.qqplot函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python _constraints.fit_constrained函数代码示例发布时间:2022-05-27
下一篇:
Python api.add_constant函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap