本文整理汇总了Python中statsmodels.base.data.handle_data函数的典型用法代码示例。如果您正苦于以下问题:Python handle_data函数的具体用法?Python handle_data怎么用?Python handle_data使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了handle_data函数的17个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: setupClass
def setupClass(cls):
cls.endog = endog = pandas.DataFrame(np.random.random((10,4)),
columns=['y_1', 'y_2', 'y_3', 'y_4'])
exog = pandas.DataFrame(np.random.random((10,2)),
columns=['x_1','x_2'])
exog.insert(0, 'const', 1)
cls.exog = exog
cls.data = sm_data.handle_data(cls.endog, cls.exog)
nrows = 10
nvars = 3
neqs = 4
cls.col_input = np.random.random(nvars)
cls.col_result = pandas.Series(cls.col_input,
index=exog.columns)
cls.row_input = np.random.random(nrows)
cls.row_result = pandas.Series(cls.row_input,
index=exog.index)
cls.cov_input = np.random.random((nvars, nvars))
cls.cov_result = pandas.DataFrame(cls.cov_input,
index = exog.columns,
columns = exog.columns)
cls.cov_eq_input = np.random.random((neqs, neqs))
cls.cov_eq_result = pandas.DataFrame(cls.cov_eq_input,
index=endog.columns,
columns=endog.columns)
cls.col_eq_input = np.random.random((nvars, neqs))
cls.col_eq_result = pandas.DataFrame(cls.col_eq_input,
index=exog.columns,
columns=endog.columns)
cls.xnames = ['const', 'x_1', 'x_2']
cls.ynames = ['y_1', 'y_2', 'y_3', 'y_4']
cls.row_labels = cls.exog.index
开发者ID:dengemann,项目名称:statsmodels,代码行数:32,代码来源:test_data.py
示例2: test_extra_kwargs_2d
def test_extra_kwargs_2d(self):
sigma = np.random.random((25, 25))
sigma = sigma + sigma.T - np.diag(np.diag(sigma))
data = sm_data.handle_data(self.y, self.X, 'drop', sigma=sigma)
idx = ~np.isnan(np.c_[self.y, self.X]).any(axis=1)
sigma = sigma[idx][:,idx]
np.testing.assert_array_equal(data.sigma, sigma)
开发者ID:dengemann,项目名称:statsmodels,代码行数:7,代码来源:test_data.py
示例3: setupClass
def setupClass(cls):
super(TestStructarrays, cls).setupClass()
cls.endog = np.random.random(9).view([("y_1", "f8")]).view(np.recarray)
exog = np.random.random(9 * 3).view([("const", "f8"), ("x_1", "f8"), ("x_2", "f8")]).view(np.recarray)
exog["const"] = 1
cls.exog = exog
cls.data = sm_data.handle_data(cls.endog, cls.exog)
cls.xnames = ["const", "x_1", "x_2"]
cls.ynames = "y_1"
开发者ID:ymarfoq,项目名称:outilACVDesagregation,代码行数:9,代码来源:test_data.py
示例4: test_drop
def test_drop(self):
y = self.y
X = self.X
combined = np.c_[y, X]
idx = ~np.isnan(combined).any(axis=1)
y = y[idx]
X = X[idx]
data = sm_data.handle_data(self.y, self.X, 'drop')
np.testing.assert_array_equal(data.endog, y)
np.testing.assert_array_equal(data.exog, X)
开发者ID:dengemann,项目名称:statsmodels,代码行数:10,代码来源:test_data.py
示例5: setup_class
def setup_class(cls):
cls.endog = pandas.DataFrame(np.random.random(10), columns=['y_1'])
mi = pandas.MultiIndex.from_product([['x'], ['1', '2']])
exog = pandas.DataFrame(np.random.random((10, 2)), columns=mi)
exog_flattened_idx = pandas.Index(['const', 'x_1', 'x_2'])
exog.insert(0, 'const', 1)
cls.exog = exog
cls.data = sm_data.handle_data(cls.endog, cls.exog)
nrows = 10
nvars = 3
cls.col_input = np.random.random(nvars)
cls.col_result = pandas.Series(cls.col_input, index=exog_flattened_idx)
cls.row_input = np.random.random(nrows)
cls.row_result = pandas.Series(cls.row_input, index=exog.index)
cls.cov_input = np.random.random((nvars, nvars))
cls.cov_result = pandas.DataFrame(cls.cov_input,
index=exog_flattened_idx,
columns=exog_flattened_idx)
cls.xnames = ['const', 'x_1', 'x_2']
cls.ynames = 'y_1'
cls.row_labels = cls.exog.index
开发者ID:bashtage,项目名称:statsmodels,代码行数:21,代码来源:test_data.py
示例6: setup_class
def setup_class(cls):
cls.endog = np.random.random(10).tolist()
exog = pandas.DataFrame(np.random.random((10,2)),
columns=['x_1','x_2'])
exog.insert(0, 'const', 1)
cls.exog = exog
cls.data = sm_data.handle_data(cls.endog, cls.exog)
nrows = 10
nvars = 3
cls.col_input = np.random.random(nvars)
cls.col_result = pandas.Series(cls.col_input,
index=exog.columns)
cls.row_input = np.random.random(nrows)
cls.row_result = pandas.Series(cls.row_input,
index=exog.index)
cls.cov_input = np.random.random((nvars, nvars))
cls.cov_result = pandas.DataFrame(cls.cov_input,
index = exog.columns,
columns = exog.columns)
cls.xnames = ['const', 'x_1', 'x_2']
cls.ynames = 'y'
cls.row_labels = cls.exog.index
开发者ID:lbybee,项目名称:statsmodels,代码行数:23,代码来源:test_data.py
示例7: test_labels
def test_labels(self):
2, 10, 14
labels = pandas.Index([0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24])
data = sm_data.handle_data(self.y, self.X, 'drop')
np.testing.assert_(data.row_labels.equals(labels))
开发者ID:dengemann,项目名称:statsmodels,代码行数:6,代码来源:test_data.py
示例8: test_mv_endog
def test_mv_endog(self):
y = self.X
y = y.ix[~np.isnan(y.values).any(axis=1)]
data = sm_data.handle_data(self.X, None, 'drop')
np.testing.assert_array_equal(data.endog, y.values)
开发者ID:dengemann,项目名称:statsmodels,代码行数:5,代码来源:test_data.py
示例9: test_endog_only_drop
def test_endog_only_drop(self):
y = self.y
y = y.dropna()
data = sm_data.handle_data(self.y, None, 'drop')
np.testing.assert_array_equal(data.endog, y.values)
开发者ID:dengemann,项目名称:statsmodels,代码行数:5,代码来源:test_data.py
示例10: test_none
def test_none(self):
data = sm_data.handle_data(self.y, self.X, 'none')
np.testing.assert_array_equal(data.endog, self.y.values)
np.testing.assert_array_equal(data.exog, self.X.values)
开发者ID:dengemann,项目名称:statsmodels,代码行数:4,代码来源:test_data.py
示例11: test_raise_no_missing
def test_raise_no_missing(self):
# smoke test for #1700
sm_data.handle_data(pandas.Series(np.random.random(20)),
pandas.DataFrame(np.random.random((20, 2))),
'raise')
开发者ID:philippmuller,项目名称:statsmodels,代码行数:5,代码来源:test_data.py
示例12: test_extra_kwargs_1d
def test_extra_kwargs_1d(self):
weights = np.random.random(25)
data = sm_data.handle_data(self.y, self.X, 'drop', weights=weights)
idx = ~np.isnan(np.c_[self.y, self.X]).any(axis=1)
weights = weights[idx]
np.testing.assert_array_equal(data.weights, weights)
开发者ID:dengemann,项目名称:statsmodels,代码行数:6,代码来源:test_data.py
示例13: test_none
def test_none(self):
data = sm_data.handle_data(self.y, self.X, 'none', hasconst=False)
np.testing.assert_array_equal(data.endog, self.y)
np.testing.assert_array_equal(data.exog, self.X)
开发者ID:lbybee,项目名称:statsmodels,代码行数:4,代码来源:test_data.py
示例14: test_pandas_noconstant
def test_pandas_noconstant(self):
exog = self.data.exog.copy()
data = sm_data.handle_data(self.data.endog, exog)
np.testing.assert_equal(data.k_constant, 0)
np.testing.assert_equal(data.const_idx, None)
开发者ID:philippmuller,项目名称:statsmodels,代码行数:5,代码来源:test_data.py
示例15: test_array_noconstant
def test_array_noconstant(self):
exog = self.data.exog.copy()
data = sm_data.handle_data(self.data.endog.values, exog.values)
np.testing.assert_equal(data.k_constant, 0)
np.testing.assert_equal(data.const_idx, None)
开发者ID:philippmuller,项目名称:statsmodels,代码行数:5,代码来源:test_data.py
示例16: test_pandas_constant
def test_pandas_constant(self):
exog = self.data.exog.copy()
exog['const'] = 1
data = sm_data.handle_data(self.data.endog, exog)
np.testing.assert_equal(data.k_constant, 1)
np.testing.assert_equal(data.const_idx, 6)
开发者ID:philippmuller,项目名称:statsmodels,代码行数:6,代码来源:test_data.py
示例17: test_formula_missing_extra_arrays
def test_formula_missing_extra_arrays():
np.random.seed(1)
# because patsy can't turn off missing data-handling as of 0.3.0, we need
# separate tests to make sure that missing values are handled correctly
# when going through formulas
# there is a handle_formula_data step
# then there is the regular handle_data step
# see 2083
# the untested cases are endog/exog have missing. extra has missing.
# endog/exog are fine. extra has missing.
# endog/exog do or do not have missing and extra has wrong dimension
y = np.random.randn(10)
y_missing = y.copy()
y_missing[[2, 5]] = np.nan
X = np.random.randn(10)
X_missing = X.copy()
X_missing[[1, 3]] = np.nan
weights = np.random.uniform(size=10)
weights_missing = weights.copy()
weights_missing[[6]] = np.nan
weights_wrong_size = np.random.randn(12)
data = {'y': y,
'X': X,
'y_missing': y_missing,
'X_missing': X_missing,
'weights': weights,
'weights_missing': weights_missing}
data = pandas.DataFrame.from_dict(data)
data['constant'] = 1
formula = 'y_missing ~ X_missing'
((endog, exog),
missing_idx, design_info) = handle_formula_data(data, None, formula,
depth=2,
missing='drop')
kwargs = {'missing_idx': missing_idx, 'missing': 'drop',
'weights': data['weights_missing']}
model_data = sm_data.handle_data(endog, exog, **kwargs)
data_nona = data.dropna()
assert_equal(data_nona['y'].values, model_data.endog)
assert_equal(data_nona[['constant', 'X']].values, model_data.exog)
assert_equal(data_nona['weights'].values, model_data.weights)
tmp = handle_formula_data(data, None, formula, depth=2, missing='drop')
(endog, exog), missing_idx, design_info = tmp
weights_2d = np.random.randn(10, 10)
weights_2d[[8, 7], [7, 8]] = np.nan #symmetric missing values
kwargs.update({'weights': weights_2d,
'missing_idx': missing_idx})
model_data2 = sm_data.handle_data(endog, exog, **kwargs)
good_idx = [0, 4, 6, 9]
assert_equal(data.loc[good_idx, 'y'], model_data2.endog)
assert_equal(data.loc[good_idx, ['constant', 'X']], model_data2.exog)
assert_equal(weights_2d[good_idx][:, good_idx], model_data2.weights)
tmp = handle_formula_data(data, None, formula, depth=2, missing='drop')
(endog, exog), missing_idx, design_info = tmp
kwargs.update({'weights': weights_wrong_size,
'missing_idx': missing_idx})
assert_raises(ValueError, sm_data.handle_data, endog, exog, **kwargs)
开发者ID:lbybee,项目名称:statsmodels,代码行数:71,代码来源:test_data.py
注:本文中的statsmodels.base.data.handle_data函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论