• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python python.iteritems函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中statsmodels.compat.python.iteritems函数的典型用法代码示例。如果您正苦于以下问题:Python iteritems函数的具体用法?Python iteritems怎么用?Python iteritems使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了iteritems函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: select_order

    def select_order(self, maxlags=None, verbose=True):
        """
        Compute lag order selections based on each of the available information
        criteria

        Parameters
        ----------
        maxlags : int
            if None, defaults to 12 * (nobs/100.)**(1./4)
        verbose : bool, default True
            If True, print table of info criteria and selected orders

        Returns
        -------
        selections : dict {info_crit -> selected_order}
        """
        if maxlags is None:
            maxlags = int(round(12*(len(self.endog)/100.)**(1/4.)))

        ics = defaultdict(list)
        for p in range(maxlags + 1):
            # exclude some periods to same amount of data used for each lag
            # order
            result = self._estimate_var(p, offset=maxlags-p)

            for k, v in iteritems(result.info_criteria):
                ics[k].append(v)

        selected_orders = dict((k, mat(v).argmin())
                               for k, v in iteritems(ics))

        if verbose:
            output.print_ic_table(ics, selected_orders)

        return selected_orders
开发者ID:bert9bert,项目名称:statsmodels,代码行数:35,代码来源:var_model.py


示例2: get_colwidths

 def get_colwidths(self, output_format, **fmt_dict):
     """Return list, the widths of each column."""
     call_args = [output_format]
     for k, v in sorted(iteritems(fmt_dict)):
         if isinstance(v, list):
             call_args.append((k, tuple(v)))
         elif isinstance(v, dict):
             call_args.append((k, tuple(sorted(iteritems(v)))))
         else:
             call_args.append((k, v))
     key = tuple(call_args)
     try:
         return self._colwidths[key]
     except KeyError:
         self._colwidths[key] = self._get_colwidths(output_format, **fmt_dict)
         return self._colwidths[key]
开发者ID:Cassin123,项目名称:statsmodels,代码行数:16,代码来源:table.py


示例3: handle_missing

    def handle_missing(cls, endog, exog, missing, **kwargs):
        """
        This returns a dictionary with keys endog, exog and the keys of
        kwargs. It preserves Nones.
        """
        none_array_names = []

        if exog is not None:
            combined = (endog, exog)
            combined_names = ['endog', 'exog']
        else:
            combined = (endog,)
            combined_names = ['endog']
            none_array_names += ['exog']

        # deal with other arrays
        combined_2d = ()
        combined_2d_names = []
        if len(kwargs):
            for key, value_array in iteritems(kwargs):
                if value_array is None or value_array.ndim == 0:
                    none_array_names += [key]
                    continue
                # grab 1d arrays
                if value_array.ndim == 1:
                    combined += (value_array,)
                    combined_names += [key]
                elif value_array.squeeze().ndim == 1:
                    combined += (value_array,)
                    combined_names += [key]

                # grab 2d arrays that are _assumed_ to be symmetric
                elif value_array.ndim == 2:
                    combined_2d += (value_array,)
                    combined_2d_names += [key]
                else:
                    raise ValueError("Arrays with more than 2 dimensions "
                            "aren't yet handled")

        nan_mask = _nan_rows(*combined)
        if combined_2d:
            nan_mask = _nan_rows(*(nan_mask[:, None],) + combined_2d)

        if missing == 'raise' and np.any(nan_mask):
            raise MissingDataError("NaNs were encountered in the data")

        elif missing == 'drop':
            nan_mask = ~nan_mask
            drop_nans = lambda x: cls._drop_nans(x, nan_mask)
            drop_nans_2d = lambda x: cls._drop_nans_2d(x, nan_mask)
            combined = dict(zip(combined_names, lmap(drop_nans, combined)))
            if combined_2d:
                combined.update(dict(zip(combined_2d_names,
                                          lmap(drop_nans_2d, combined_2d))))
            if none_array_names:
                combined.update(dict(zip(none_array_names,
                                          [None] * len(none_array_names))))
            return combined, np.where(~nan_mask)[0].tolist()
        else:
            raise ValueError("missing option %s not understood" % missing)
开发者ID:andrewclegg,项目名称:statsmodels,代码行数:60,代码来源:data.py


示例4: _reduce_dict

def _reduce_dict(count_dict, partial_key):
    """
    Make partial sum on a counter dict.
    Given a match for the beginning of the category, it will sum each value.
    """
    L = len(partial_key)
    count = sum(v for k, v in iteritems(count_dict) if k[:L] == partial_key)
    return count
开发者ID:Inoryy,项目名称:statsmodels,代码行数:8,代码来源:mosaicplot.py


示例5: _normalize_data

def _normalize_data(data, index):
    """normalize the data to a dict with tuples of strings as keys
    right now it works with:

        0 - dictionary (or equivalent mappable)
        1 - pandas.Series with simple or hierarchical indexes
        2 - numpy.ndarrays
        3 - everything that can be converted to a numpy array
        4 - pandas.DataFrame (via the _normalize_dataframe function)
    """
    # if data is a dataframe we need to take a completely new road
    # before coming back here. Use the hasattr to avoid importing
    # pandas explicitly
    if hasattr(data, 'pivot') and hasattr(data, 'groupby'):
        data = _normalize_dataframe(data, index)
        index = None
    # can it be used as a dictionary?
    try:
        items = list(iteritems(data))
    except AttributeError:
        # ok, I cannot use the data as a dictionary
        # Try to convert it to a numpy array, or die trying
        data = np.asarray(data)
        temp = OrderedDict()
        for idx in np.ndindex(data.shape):
            name = tuple(i for i in idx)
            temp[name] = data[idx]
        data = temp
        items = list(iteritems(data))
    # make all the keys a tuple, even if simple numbers
    data = OrderedDict([_tuplify(k), v] for k, v in items)
    categories_levels = _categories_level(list(iterkeys(data)))
    # fill the void in the counting dictionary
    indexes = product(*categories_levels)
    contingency = OrderedDict([(k, data.get(k, 0)) for k in indexes])
    data = contingency
    # reorder the keys order according to the one specified by the user
    # or if the index is None convert it into a simple list
    # right now it doesn't do any check, but can be modified in the future
    index = lrange(len(categories_levels)) if index is None else index
    contingency = OrderedDict()
    for key, value in iteritems(data):
        new_key = tuple(key[i] for i in index)
        contingency[new_key] = value
    data = contingency
    return data
开发者ID:Inoryy,项目名称:statsmodels,代码行数:46,代码来源:mosaicplot.py


示例6: populate_wrapper

def populate_wrapper(klass, wrapping):
    for meth, how in iteritems(klass._wrap_methods):
        if not hasattr(wrapping, meth):
            continue

        func = getattr(wrapping, meth)
        wrapper = make_wrapper(func, how)
        setattr(klass, meth, wrapper)
开发者ID:statsmodels,项目名称:statsmodels,代码行数:8,代码来源:wrapper.py


示例7: test_get_trendorder

def test_get_trendorder():
    results = {
        'c' : 1,
        'nc' : 0,
        'ct' : 2,
        'ctt' : 3
    }

    for t, trendorder in iteritems(results):
        assert(util.get_trendorder(t) == trendorder)
开发者ID:Wombatpm,项目名称:statsmodels,代码行数:10,代码来源:test_var.py


示例8: equations

    def equations(self):
        eqs = {}
        for col, ts in iteritems(self.y):
            model = _window_ols(y=ts, x=self.x, window=self._window,
                                window_type=self._window_type,
                                min_periods=self._min_periods)

            eqs[col] = model

        return eqs
开发者ID:dieterv77,项目名称:statsmodels,代码行数:10,代码来源:dynamic.py


示例9: select_order

    def select_order(self, maxlag, ic, trend='c', method='mle'):
        """
        Select the lag order according to the information criterion.

        Parameters
        ----------
        maxlag : int
            The highest lag length tried. See `AR.fit`.
        ic : str {'aic','bic','hqic','t-stat'}
            Criterion used for selecting the optimal lag length.
            See `AR.fit`.
        trend : str {'c','nc'}
            Whether to include a constant or not. 'c' - include constant.
            'nc' - no constant.

        Returns
        -------
        bestlag : int
            Best lag according to IC.
        """
        endog = self.endog

        # make Y and X with same nobs to compare ICs
        Y = endog[maxlag:]
        self.Y = Y  # attach to get correct fit stats
        X = self._stackX(maxlag, trend)  # sets k_trend
        self.X = X
        k = self.k_trend  # k_trend set in _stackX
        k = max(1, k)  # handle if startlag is 0
        results = {}

        if ic != 't-stat':
            for lag in range(k, maxlag+1):
                # have to reinstantiate the model to keep comparable models
                endog_tmp = endog[maxlag-lag:]
                fit = AR(endog_tmp).fit(maxlag=lag, method=method,
                                        full_output=0, trend=trend,
                                        maxiter=100, disp=0)
                results[lag] = eval('fit.'+ic)
            bestic, bestlag = min((res, k) for k, res in iteritems(results))

        else:  # choose by last t-stat.
            stop = 1.6448536269514722  # for t-stat, norm.ppf(.95)
            for lag in range(maxlag, k - 1, -1):
                # have to reinstantiate the model to keep comparable models
                endog_tmp = endog[maxlag - lag:]
                fit = AR(endog_tmp).fit(maxlag=lag, method=method,
                                        full_output=0, trend=trend,
                                        maxiter=35, disp=-1)

                bestlag = 0
                if np.abs(fit.tvalues[-1]) >= stop:
                    bestlag = lag
                    break
        return bestlag
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:55,代码来源:ar_model.py


示例10: equations

    def equations(self):
        eqs = {}
        for col, ts in iteritems(self.y):
            # TODO: Remove in favor of statsmodels implemetation
            model = pd.ols(y=ts, x=self.x, window=self._window,
                           window_type=self._window_type,
                           min_periods=self._min_periods)

            eqs[col] = model

        return eqs
开发者ID:Inoryy,项目名称:statsmodels,代码行数:11,代码来源:dynamic.py


示例11: _statistical_coloring

def _statistical_coloring(data):
    """evaluate colors from the indipendence properties of the matrix
    It will encounter problem if one category has all zeros
    """
    data = _normalize_data(data, None)
    categories_levels = _categories_level(list(iterkeys(data)))
    Nlevels = len(categories_levels)
    total = 1.0 * sum(v for v in itervalues(data))
    # count the proportion of observation
    # for each level that has the given name
    # at each level
    levels_count = []
    for level_idx in range(Nlevels):
        proportion = {}
        for level in categories_levels[level_idx]:
            proportion[level] = 0.0
            for key, value in iteritems(data):
                if level == key[level_idx]:
                    proportion[level] += value
            proportion[level] /= total
        levels_count.append(proportion)
    # for each key I obtain the expected value
    # and it's standard deviation from a binomial distribution
    # under the hipothesys of independence
    expected = {}
    for key, value in iteritems(data):
        base = 1.0
        for i, k in enumerate(key):
            base *= levels_count[i][k]
        expected[key] = base * total, np.sqrt(total * base * (1.0 - base))
    # now we have the standard deviation of distance from the
    # expected value for each tile. We create the colors from this
    sigmas = dict((k, (data[k] - m) / s) for k, (m, s) in iteritems(expected))
    props = {}
    for key, dev in iteritems(sigmas):
        red = 0.0 if dev < 0 else (dev / (1 + dev))
        blue = 0.0 if dev > 0 else (dev / (-1 + dev))
        green = (1.0 - red - blue) / 2.0
        hatch = 'x' if dev > 2 else 'o' if dev < -2 else ''
        props[key] = {'color': [red, green, blue], 'hatch': hatch}
    return props
开发者ID:Inoryy,项目名称:statsmodels,代码行数:41,代码来源:mosaicplot.py


示例12: coefs

    def coefs(self):
        """
        Return dynamic regression coefficients as Panel
        """
        data = {}
        for eq, result in iteritems(self.equations):
            data[eq] = result.beta

        panel = pd.Panel.fromDict(data)

        # Coefficient names become items
        return panel.swapaxes('items', 'minor')
开发者ID:Inoryy,项目名称:statsmodels,代码行数:12,代码来源:dynamic.py


示例13: summary_model

def summary_model(results):
    '''Create a dict with information about the model
    '''

    def time_now(*args, **kwds):
        now = datetime.datetime.now()
        return now.strftime('%Y-%m-%d %H:%M')

    info = OrderedDict()
    info['Model:'] = lambda x: x.model.__class__.__name__
    info['Model Family:'] = lambda x: x.family.__class.__name__
    info['Link Function:'] = lambda x: x.family.link.__class__.__name__
    info['Dependent Variable:'] = lambda x: x.model.endog_names
    info['Date:'] = time_now
    info['No. Observations:'] = lambda x: "%#6d" % x.nobs
    info['Df Model:'] = lambda x: "%#6d" % x.df_model
    info['Df Residuals:'] = lambda x: "%#6d" % x.df_resid
    info['Converged:'] = lambda x: x.mle_retvals['converged']
    info['No. Iterations:'] = lambda x: x.mle_retvals['iterations']
    info['Method:'] = lambda x: x.method
    info['Norm:'] = lambda x: x.fit_options['norm']
    info['Scale Est.:'] = lambda x: x.fit_options['scale_est']
    info['Cov. Type:'] = lambda x: x.fit_options['cov']

    rsquared_type = '' if results.k_constant else ' (uncentered)'
    info['R-squared' + rsquared_type + ':'] = lambda x: "%#8.3f" % x.rsquared
    info['Adj. R-squared' + rsquared_type + ':'] = lambda x: "%#8.3f" % x.rsquared_adj
    info['Pseudo R-squared:'] = lambda x: "%#8.3f" % x.prsquared
    info['AIC:'] = lambda x: "%8.4f" % x.aic
    info['BIC:'] = lambda x: "%8.4f" % x.bic
    info['Log-Likelihood:'] = lambda x: "%#8.5g" % x.llf
    info['LL-Null:'] = lambda x: "%#8.5g" % x.llnull
    info['LLR p-value:'] = lambda x: "%#8.5g" % x.llr_pvalue
    info['Deviance:'] = lambda x: "%#8.5g" % x.deviance
    info['Pearson chi2:'] = lambda x: "%#6.3g" % x.pearson_chi2
    info['F-statistic:'] = lambda x: "%#8.4g" % x.fvalue
    info['Prob (F-statistic):'] = lambda x: "%#6.3g" % x.f_pvalue
    info['Scale:'] = lambda x: "%#8.5g" % x.scale
    out = OrderedDict()
    for key, func in iteritems(info):
        try:
            out[key] = func(results)
        except (AttributeError, KeyError, NotImplementedError):
            # NOTE: some models don't have loglike defined (RLM),
            #   so raise NotImplementedError
            pass
    return out
开发者ID:bashtage,项目名称:statsmodels,代码行数:47,代码来源:summary2.py


示例14: _recode

def _recode(x, levels):
    """ Recode categorial data to int factor.

    Parameters
    ----------
    x : array-like
        array like object supporting with numpy array methods of categorially
        coded data.
    levels : dict
        mapping of labels to integer-codings

    Returns
    -------
    out : instance numpy.ndarray

    """
    from pandas import Series
    name = None
    index = None

    if isinstance(x, Series):
        name = x.name
        index = x.index
        x = x.values

    if x.dtype.type not in [np.str_, np.object_]:
        raise ValueError('This is not a categorial factor.'
                         ' Array of str type required.')

    elif not isinstance(levels, dict):
        raise ValueError('This is not a valid value for levels.'
                         ' Dict required.')

    elif not (np.unique(x) == np.unique(list(iterkeys(levels)))).all():
        raise ValueError('The levels do not match the array values.')

    else:
        out = np.empty(x.shape[0], dtype=np.int)
        for level, coding in iteritems(levels):
            out[x == level] = coding

        if name:
            out = Series(out, name=name, index=index)

        return out
开发者ID:bashtage,项目名称:statsmodels,代码行数:45,代码来源:factorplots.py


示例15: test_multi_pvalcorrection

    def test_multi_pvalcorrection(self):
        #test against R package multtest mt.rawp2adjp

        res_multtest = self.res2
        pval0 = res_multtest[:,0]

        for k,v in iteritems(rmethods):
            if v[1] in self.methods:
                reject, pvalscorr = multipletests(pval0,
                                                  alpha=self.alpha,
                                                  method=v[1])[:2]
                assert_almost_equal(pvalscorr, res_multtest[:,v[0]], 15)
                assert_equal(reject, pvalscorr <= self.alpha)

        pvalscorr = np.sort(fdrcorrection(pval0, method='n')[1])
        assert_almost_equal(pvalscorr, res_multtest[:,7], 15)
        pvalscorr = np.sort(fdrcorrection(pval0, method='i')[1])
        assert_almost_equal(pvalscorr, res_multtest[:,6], 15)
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:18,代码来源:test_multi.py


示例16: _key_splitting

def _key_splitting(rect_dict, keys, values, key_subset, horizontal, gap):
    """
    Given a dictionary where each entry  is a rectangle, a list of key and
    value (count of elements in each category) it split each rect accordingly,
    as long as the key start with the tuple key_subset.  The other keys are
    returned without modification.
    """
    result = OrderedDict()
    L = len(key_subset)
    for name, (x, y, w, h) in iteritems(rect_dict):
        if key_subset == name[:L]:
            # split base on the values given
            divisions = _split_rect(x, y, w, h, values, horizontal, gap)
            for key, rect in zip(keys, divisions):
                result[name + (key,)] = rect
        else:
            result[name] = (x, y, w, h)
    return result
开发者ID:Inoryy,项目名称:statsmodels,代码行数:18,代码来源:mosaicplot.py


示例17: summary_model

def summary_model(results):
    '''Create a dict with information about the model
    '''
    def time_now(**kwrds):
        now = datetime.datetime.now()
        return now.strftime('%Y-%m-%d %H:%M')
    info = OrderedDict()
    info['Model:'] = lambda x: x.model.__class__.__name__
    info['Model Family:'] = lambda x: x.family.__class.__name__
    info['Link Function:'] = lambda x: x.family.link.__class__.__name__
    info['Dependent Variable:'] = lambda x: x.model.endog_names
    info['Date:'] = time_now()
    info['No. Observations:'] = lambda x: "%#6d" % x.nobs
    info['Df Model:'] = lambda x: "%#6d" % x.df_model
    info['Df Residuals:'] = lambda x: "%#6d" % x.df_resid
    info['Converged:'] = lambda x: x.mle_retvals['converged']
    info['No. Iterations:'] = lambda x: x.mle_retvals['iterations']
    info['Method:'] = lambda x: x.method
    info['Norm:'] = lambda x: x.fit_options['norm']
    info['Scale Est.:'] = lambda x: x.fit_options['scale_est']
    info['Cov. Type:'] = lambda x: x.fit_options['cov']
    info['R-squared:'] = lambda x: "%#8.3f" % x.rsquared
    info['Adj. R-squared:'] = lambda x: "%#8.3f" % x.rsquared_adj
    info['Pseudo R-squared:'] = lambda x: "%#8.3f" % x.prsquared
    info['AIC:'] = lambda x: "%8.4f" % x.aic
    info['BIC:'] = lambda x: "%8.4f" % x.bic
    info['Log-Likelihood:'] = lambda x: "%#8.5g" % x.llf
    info['LL-Null:'] = lambda x: "%#8.5g" % x.llnull
    info['LLR p-value:'] = lambda x: "%#8.5g" % x.llr_pvalue
    info['Deviance:'] = lambda x: "%#8.5g" % x.deviance
    info['Pearson chi2:'] = lambda x: "%#6.3g" % x.pearson_chi2
    info['F-statistic:'] = lambda x: "%#8.4g" % x.fvalue
    info['Prob (F-statistic):'] = lambda x: "%#6.3g" % x.f_pvalue
    info['Scale:'] = lambda x: "%#8.5g" % x.scale
    out = OrderedDict()
    for key in iteritems(info):
        try:
            out[key] = info[key](results)
        except:
            pass
    return out
开发者ID:brianckeegan,项目名称:statsmodels,代码行数:41,代码来源:summary2.py


示例18: test_mosaic_very_complex

def test_mosaic_very_complex():
    # make a scattermatrix of mosaic plots to show the correlations between
    # each pair of variable in a dataset. Could be easily converted into a
    # new function that does this automatically based on the type of data
    key_name = ['gender', 'age', 'health', 'work']
    key_base = (['male', 'female'], ['old', 'young'],
                    ['healty', 'ill'], ['work', 'unemployed'])
    keys = list(product(*key_base))
    data = OrderedDict(zip(keys, range(1, 1 + len(keys))))
    props = {}
    props[('male', 'old')] = {'color': 'r'}
    props[('female',)] = {'color': 'pink'}
    L = len(key_base)
    fig, axes = pylab.subplots(L, L)
    for i in range(L):
        for j in range(L):
            m = set(range(L)).difference(set((i, j)))
            if i == j:
                axes[i, i].text(0.5, 0.5, key_name[i],
                                ha='center', va='center')
                axes[i, i].set_xticks([])
                axes[i, i].set_xticklabels([])
                axes[i, i].set_yticks([])
                axes[i, i].set_yticklabels([])
            else:
                ji = max(i, j)
                ij = min(i, j)
                temp_data = OrderedDict([((k[ij], k[ji]) + tuple(k[r] for r in m), v)
                                            for k, v in iteritems(data)])

                keys = list(iterkeys(temp_data))
                for k in keys:
                    value = _reduce_dict(temp_data, k[:2])
                    temp_data[k[:2]] = value
                    del temp_data[k]
                mosaic(temp_data, ax=axes[i, j], axes_label=False,
                       properties=props, gap=0.05, horizontal=i > j)
    pylab.suptitle('old males should look bright red,  (plot 4 of 4)')
    #pylab.show()
    pylab.close('all')
开发者ID:cong1989,项目名称:statsmodels,代码行数:40,代码来源:test_mosaicplot.py


示例19: __init__

    def __init__(self, endog, exog, tree, paramsind):
        self.endog = endog
        self.datadict = exog
        self.tree = tree
        self.paramsind = paramsind

        self.branchsum = ''
        self.probs = {}
        self.probstxt = {}
        self.branchleaves = {}
        self.branchvalues = {}  #just to keep track of returns by branches
        self.branchsums = {}
        self.bprobs = {}
        self.branches, self.leaves, self.branches_degenerate  = getnodes(tree)
        self.nbranches = len(self.branches)

        #copied over but not quite sure yet
        #unique, parameter array names,
        #sorted alphabetically, order is/should be only internal

        self.paramsnames = (sorted(set([i for j in itervalues(paramsind)
                                       for i in j])) +
                            ['tau_%s' % bname for bname in self.branches])

        self.nparams = len(self.paramsnames)

        #mapping coefficient names to indices to unique/parameter array
        self.paramsidx = dict((name, idx) for (idx,name) in
                              enumerate(self.paramsnames))

        #mapping branch and leaf names to index in parameter array
        self.parinddict = dict((k, [self.paramsidx[j] for j in v])
                               for k,v in iteritems(self.paramsind))

        self.recursionparams = 1. + np.arange(len(self.paramsnames))
        #for testing that individual parameters are used in the right place
        self.recursionparams = np.zeros(len(self.paramsnames))
        #self.recursionparams[2] = 1
        self.recursionparams[-self.nbranches:] = 1  #values for tau's
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:39,代码来源:treewalkerclass.py


示例20: test_adf_autolag

def test_adf_autolag():
    #see issue #246
    #this is mostly a unit test
    d2 = macrodata.load().data

    for k_trend, tr in enumerate(['nc', 'c', 'ct', 'ctt']):
        #[None:'nc', 0:'c', 1:'ct', 2:'ctt']
        x = np.log(d2['realgdp'])
        xd = np.diff(x)

        #check exog
        adf3 = tsast.adfuller(x, maxlag=None, autolag='aic',
                              regression=tr, store=True, regresults=True)
        st2 = adf3[-1]

        assert_equal(len(st2.autolag_results), 15 + 1)  #+1 for lagged level
        for l, res in sorted(iteritems(st2.autolag_results))[:5]:
            lag = l-k_trend
            #assert correct design matrices in _autolag
            assert_equal(res.model.exog[-10:,k_trend], x[-11:-1])
            assert_equal(res.model.exog[-1,k_trend+1:], xd[-lag:-1][::-1])
            #min-ic lag of dfgls in Stata is also 2, or 9 for maic with notrend
            assert_equal(st2.usedlag, 2)

        #same result with lag fixed at usedlag of autolag
        adf2 = tsast.adfuller(x, maxlag=2, autolag=None, regression=tr)
        assert_almost_equal(adf3[:2], adf2[:2], decimal=12)


    tr = 'c'
    #check maxlag with autolag
    adf3 = tsast.adfuller(x, maxlag=5, autolag='aic',
                          regression=tr, store=True, regresults=True)
    assert_equal(len(adf3[-1].autolag_results), 5 + 1)
    adf3 = tsast.adfuller(x, maxlag=0, autolag='aic',
                          regression=tr, store=True, regresults=True)
    assert_equal(len(adf3[-1].autolag_results), 0 + 1)
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:37,代码来源:test_adfuller_lag.py



注:本文中的statsmodels.compat.python.iteritems函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python python.iterkeys函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.np_matrix_rank函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap