• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python python.lrange函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中statsmodels.compat.python.lrange函数的典型用法代码示例。如果您正苦于以下问题:Python lrange函数的具体用法?Python lrange怎么用?Python lrange使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了lrange函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_wls_example

def test_wls_example():
    #example from the docstring, there was a note about a bug, should
    #be fixed now
    Y = [1,3,4,5,2,3,4]
    X = lrange(1,8)
    X = add_constant(X, prepend=False)
    wls_model = WLS(Y,X, weights=lrange(1,8)).fit()
    #taken from R lm.summary
    assert_almost_equal(wls_model.fvalue, 0.127337843215, 6)
    assert_almost_equal(wls_model.scale, 2.44608530786**2, 6)
开发者ID:NanoResearch,项目名称:statsmodels,代码行数:10,代码来源:test_regression.py


示例2: test_arma_order_select_ic

def test_arma_order_select_ic():
    # smoke test, assumes info-criteria are right
    from statsmodels.tsa.arima_process import arma_generate_sample

    arparams = np.array([.75, -.25])
    maparams = np.array([.65, .35])
    arparams = np.r_[1, -arparams]
    maparam = np.r_[1, maparams]
    nobs = 250
    np.random.seed(2014)
    y = arma_generate_sample(arparams, maparams, nobs)
    res = arma_order_select_ic(y, ic=['aic', 'bic'], trend='nc')
    # regression tests in case we change algorithm to minic in sas
    aic_x = np.array([[       np.nan,  552.7342255 ,  484.29687843],
                      [ 562.10924262,  485.5197969 ,  480.32858497],
                      [ 507.04581344,  482.91065829,  481.91926034],
                      [ 484.03995962,  482.14868032,  483.86378955],
                      [ 481.8849479 ,  483.8377379 ,  485.83756612]])
    bic_x = np.array([[       np.nan,  559.77714733,  494.86126118],
                      [ 569.15216446,  496.08417966,  494.41442864],
                      [ 517.61019619,  496.99650196,  499.52656493],
                      [ 498.12580329,  499.75598491,  504.99255506],
                      [ 499.49225249,  504.96650341,  510.48779255]])
    aic = DataFrame(aic_x, index=lrange(5), columns=lrange(3))
    bic = DataFrame(bic_x, index=lrange(5), columns=lrange(3))
    assert_almost_equal(res.aic.values, aic.values, 5)
    assert_almost_equal(res.bic.values, bic.values, 5)
    assert_equal(res.aic_min_order, (1, 2))
    assert_equal(res.bic_min_order, (1, 2))
    assert_(res.aic.index.equals(aic.index))
    assert_(res.aic.columns.equals(aic.columns))
    assert_(res.bic.index.equals(bic.index))
    assert_(res.bic.columns.equals(bic.columns))

    index = pd.date_range('2000-1-1', freq='M', periods=len(y))
    y_series = pd.Series(y, index=index)
    res_pd = arma_order_select_ic(y_series, max_ar=2, max_ma=1,
                                  ic=['aic', 'bic'], trend='nc')
    assert_almost_equal(res_pd.aic.values, aic.values[:3, :2], 5)
    assert_almost_equal(res_pd.bic.values, bic.values[:3, :2], 5)
    assert_equal(res_pd.aic_min_order, (2, 1))
    assert_equal(res_pd.bic_min_order, (1, 1))

    res = arma_order_select_ic(y, ic='aic', trend='nc')
    assert_almost_equal(res.aic.values, aic.values, 5)
    assert_(res.aic.index.equals(aic.index))
    assert_(res.aic.columns.equals(aic.columns))
    assert_equal(res.aic_min_order, (1, 2))
开发者ID:haribharadwaj,项目名称:statsmodels,代码行数:48,代码来源:test_stattools.py


示例3: print_ic_table

def print_ic_table(ics, selected_orders):
    """
    For VAR order selection

    """
    # Can factor this out into a utility method if so desired

    cols = sorted(ics)

    data = mat([["%#10.4g" % v for v in ics[c]] for c in cols],
               dtype=object).T

    # start minimums
    for i, col in enumerate(cols):
        idx = int(selected_orders[col]), i
        data[idx] = data[idx] + '*'
        # data[idx] = data[idx][:-1] + '*' # super hack, ugh

    fmt = dict(_default_table_fmt,
               data_fmts=("%s",) * len(cols))

    buf = StringIO()
    table = SimpleTable(data, cols, lrange(len(data)),
                        title='VAR Order Selection', txt_fmt=fmt)
    buf.write(str(table) + '\n')
    buf.write('* Minimum' + '\n')

    print(buf.getvalue())
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:28,代码来源:output.py


示例4: _plot_leverage_resid2

def _plot_leverage_resid2(results, influence, alpha=.05, ax=None,
                         **kwargs):

    from scipy.stats import zscore, norm
    fig, ax = utils.create_mpl_ax(ax)

    infl = influence
    leverage = infl.hat_matrix_diag
    resid = zscore(infl.resid)
    ax.plot(resid**2, leverage, 'o', **kwargs)
    ax.set_xlabel("Normalized residuals**2")
    ax.set_ylabel("Leverage")
    ax.set_title("Leverage vs. Normalized residuals squared")

    large_leverage = leverage > _high_leverage(results)
    #norm or t here if standardized?
    cutoff = norm.ppf(1.-alpha/2)
    large_resid = np.abs(resid) > cutoff
    labels = results.model.data.row_labels
    if labels is None:
        labels = lrange(int(results.nobs))
    index = np.where(np.logical_or(large_leverage, large_resid))[0]
    ax = utils.annotate_axes(index, labels, lzip(resid**2, leverage),
                             [(0, 5)]*int(results.nobs), "large",
                             ax=ax, ha="center", va="bottom")
    ax.margins(.075, .075)
    return fig
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:27,代码来源:regressionplots.py


示例5: _make_predict_dates

    def _make_predict_dates(self):
        data = self.data
        dtstart = data.predict_start
        dtend = data.predict_end
        freq = data.freq

        if freq is not None:
            pandas_freq = _freq_to_pandas[freq]
            try:
                from pandas import DatetimeIndex
                dates = DatetimeIndex(start=dtstart, end=dtend,
                                        freq=pandas_freq)
            except ImportError as err:
                from pandas import DateRange
                dates = DateRange(dtstart, dtend, offset = pandas_freq).values
        # handle
        elif freq is None and (isinstance(dtstart, int) and
                               isinstance(dtend, int)):
            from pandas import Index
            dates = Index(lrange(dtstart, dtend+1))
        # if freq is None and dtstart and dtend aren't integers, we're
        # in sample
        else:
            dates = self.data.dates
            start = self._get_dates_loc(dates, dtstart)
            end = self._get_dates_loc(dates, dtend)
            dates = dates[start:end+1] # is this index inclusive?
        self.data.predict_dates = dates
开发者ID:5267,项目名称:statsmodels,代码行数:28,代码来源:tsa_model.py


示例6: maineffect_func

 def maineffect_func(value, reference=reference):
     rvalue = []
     keep = lrange(value.shape[0])
     keep.pop(reference)
     for i in range(len(keep)):
         rvalue.append(value[keep[i]] - value[reference])
     return np.array(rvalue)
开发者ID:statsmodels,项目名称:statsmodels,代码行数:7,代码来源:formula.py


示例7: _make_predict_dates

    def _make_predict_dates(self):
        data = self.data
        dtstart = data.predict_start
        dtend = data.predict_end
        freq = data.freq

        if freq is not None:
            pandas_freq = _freq_to_pandas[freq]
            # preserve PeriodIndex or DatetimeIndex
            dates = self.data.dates.__class__(start=dtstart,
                                              end=dtend,
                                              freq=pandas_freq)
        # handle
        elif freq is None and (isinstance(dtstart, (int, long)) and
                               isinstance(dtend, (int, long))):
            from pandas import Index
            dates = Index(lrange(dtstart, dtend+1))
        # if freq is None and dtstart and dtend aren't integers, we're
        # in sample
        else:
            dates = self.data.dates
            start = self._get_dates_loc(dates, dtstart)
            end = self._get_dates_loc(dates, dtend)
            dates = dates[start:end+1] # is this index inclusive?
        self.data.predict_dates = dates
开发者ID:Inoryy,项目名称:statsmodels,代码行数:25,代码来源:tsa_model.py


示例8: test_pickle

def test_pickle():
    import tempfile
    from numpy.testing import assert_equal
    tmpdir = tempfile.mkdtemp(prefix='pickle')
    a = lrange(10)
    save_pickle(a, tmpdir+'/res.pkl')
    b = load_pickle(tmpdir+'/res.pkl')
    assert_equal(a, b)

    #cleanup, tested on Windows
    try:
        import os
        os.remove(tmpdir+'/res.pkl')
        os.rmdir(tmpdir)
    except (OSError, IOError):
        pass
    assert not os.path.exists(tmpdir)

    #test with file handle
    fh = BytesIO()
    save_pickle(a, fh)
    fh.seek(0,0)
    c = load_pickle(fh)
    fh.close()
    assert_equal(a,b)
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:25,代码来源:test_pickle.py


示例9: plot_with_error

def plot_with_error(y, error, x=None, axes=None, value_fmt='k',
                    error_fmt='k--', alpha=0.05, stderr_type = 'asym'):
    """
    Make plot with optional error bars

    Parameters
    ----------
    y :
    error : array or None

    """
    import matplotlib.pyplot as plt

    if axes is None:
        axes = plt.gca()

    x = x if x is not None else lrange(len(y))
    plot_action = lambda y, fmt: axes.plot(x, y, fmt)
    plot_action(y, value_fmt)

    #changed this
    if error is not None:
        if stderr_type == 'asym':
            q = util.norm_signif_level(alpha)
            plot_action(y - q * error, error_fmt)
            plot_action(y + q * error, error_fmt)
        if stderr_type in ('mc','sz1','sz2','sz3'):
            plot_action(error[0], error_fmt)
            plot_action(error[1], error_fmt)
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:29,代码来源:plotting.py


示例10: irf_grid_plot

def irf_grid_plot(values, stderr, impcol, rescol, names, title,
                  signif=0.05, hlines=None, subplot_params=None,
                  plot_params=None, figsize=(10,10), stderr_type='asym'):
    """
    Reusable function to make flexible grid plots of impulse responses and
    comulative effects

    values : (T + 1) x k x k
    stderr : T x k x k
    hlines : k x k
    """
    import matplotlib.pyplot as plt

    if subplot_params is None:
        subplot_params = {}
    if plot_params is None:
        plot_params = {}

    nrows, ncols, to_plot = _get_irf_plot_config(names, impcol, rescol)

    fig, axes = plt.subplots(nrows=nrows, ncols=ncols, sharex=True,
                             squeeze=False, figsize=figsize)

    # fill out space
    adjust_subplots()

    fig.suptitle(title, fontsize=14)

    subtitle_temp = r'%s$\rightarrow$%s'

    k = len(names)

    rng = lrange(len(values))
    for (j, i, ai, aj) in to_plot:
        ax = axes[ai][aj]

        # HACK?
        if stderr is not None:
            if stderr_type == 'asym':
                sig = np.sqrt(stderr[:, j * k + i, j * k + i])
                plot_with_error(values[:, i, j], sig, x=rng, axes=ax,
                            alpha=signif, value_fmt='b', stderr_type=stderr_type)
            if stderr_type in ('mc','sz1','sz2','sz3'):
                errs = stderr[0][:, i, j], stderr[1][:, i, j]
                plot_with_error(values[:, i, j], errs, x=rng, axes=ax,
                            alpha=signif, value_fmt='b', stderr_type=stderr_type)
        else:
            plot_with_error(values[:, i, j], None, x=rng, axes=ax,
                            value_fmt='b')

        ax.axhline(0, color='k')

        if hlines is not None:
            ax.axhline(hlines[i,j], color='k')

        sz = subplot_params.get('fontsize', 12)
        ax.set_title(subtitle_temp % (names[j], names[i]), fontsize=sz)

    return fig
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:59,代码来源:plotting.py


示例11: _maybe_reset_index

def _maybe_reset_index(data):
    """
    All the Rdatasets have the integer row.labels from R if there is no
    real index. Strip this for a zero-based index
    """
    if data.index.equals(Index(lrange(1, len(data) + 1))):
        data = data.reset_index(drop=True)
    return data
开发者ID:BranYang,项目名称:statsmodels,代码行数:8,代码来源:utils.py


示例12: variables

 def variables(self):
     """
     Returns a list of the dataset's StataVariables objects.
     """
     return lmap(_StataVariable, zip(lrange(self._header['nvar']),
         self._header['typlist'], self._header['varlist'],
         self._header['srtlist'],
         self._header['fmtlist'], self._header['lbllist'],
         self._header['vlblist']))
开发者ID:statsmodels,项目名称:statsmodels,代码行数:9,代码来源:foreign.py


示例13: __iter__

 def __iter__(self):
     n = self.n
     p = self.p
     comb = combinations(lrange(n), p)
     for idx in comb:
         test_index = np.zeros(n, dtype=np.bool)
         test_index[np.array(idx)] = True
         train_index = np.logical_not(test_index)
         yield train_index, test_index
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:9,代码来源:cross_val.py


示例14: test__reduce_dict

def test__reduce_dict():
    data = OrderedDict(zip(list(product('mf', 'oy', 'wn')), [1] * 8))
    eq(_reduce_dict(data, ('m',)), 4)
    eq(_reduce_dict(data, ('m', 'o')), 2)
    eq(_reduce_dict(data, ('m', 'o', 'w')), 1)
    data = OrderedDict(zip(list(product('mf', 'oy', 'wn')), lrange(8)))
    eq(_reduce_dict(data, ('m',)), 6)
    eq(_reduce_dict(data, ('m', 'o')), 1)
    eq(_reduce_dict(data, ('m', 'o', 'w')), 0)
开发者ID:cong1989,项目名称:statsmodels,代码行数:9,代码来源:test_mosaicplot.py


示例15: date_range_str

def date_range_str(start, end=None, length=None):
    """
    Returns a list of abbreviated date strings.

    Parameters
    ----------
    start : str
        The first abbreviated date, for instance, '1965q1' or '1965m1'
    end : str, optional
        The last abbreviated date if length is None.
    length : int, optional
        The length of the returned array of end is None.

    Returns
    -------
    date_range : list
        List of strings
    """
    flags = re.IGNORECASE | re.VERBOSE
    #_check_range_inputs(end, length, freq)
    start = start.lower()
    if re.search(_m_pattern, start, flags):
        annual_freq = 12
        split = 'm'
    elif re.search(_q_pattern, start, flags):
        annual_freq = 4
        split = 'q'
    elif re.search(_y_pattern, start, flags):
        annual_freq = 1
        start += 'a1' # hack
        if end:
            end += 'a1'
        split = 'a'
    else:
        raise ValueError("Date %s not understood" % start)
    yr1, offset1 = lmap(int, start.replace(":","").split(split))
    if end is not None:
        end = end.lower()
        yr2, offset2 = lmap(int, end.replace(":","").split(split))
        length = (yr2 - yr1) * annual_freq + offset2
    elif length:
        yr2 = yr1 + length // annual_freq
        offset2 = length % annual_freq + (offset1 - 1)
    years = np.repeat(lrange(yr1+1, yr2), annual_freq).tolist()
    years = np.r_[[str(yr1)]*(annual_freq+1-offset1), years] # tack on first year
    years = np.r_[years, [str(yr2)]*offset2] # tack on last year
    if split != 'a':
        offset = np.tile(np.arange(1, annual_freq+1), yr2-yr1-1)
        offset = np.r_[np.arange(offset1, annual_freq+1).astype('a2'), offset]
        offset = np.r_[offset, np.arange(1,offset2+1).astype('a2')]
        date_arr_range = [''.join([i, split, asstr(j)]) for i,j in
                                                        zip(years, offset)]
    else:
        date_arr_range = years.tolist()
    return date_arr_range
开发者ID:Inoryy,项目名称:statsmodels,代码行数:55,代码来源:datetools.py


示例16: interactions

def interactions(terms, order=[1,2]):
    """
    Output all pairwise interactions of given order of a
    sequence of terms.

    The argument order is a sequence specifying which order
    of interactions should be generated -- the default
    creates main effects and two-way interactions. If order
    is an integer, it is changed to range(1,order+1), so
    order=3 is equivalent to order=[1,2,3], generating
    all one, two and three-way interactions.

    If any entry of order is greater than len(terms), it is
    effectively treated as len(terms).

    >>> print interactions([Term(l) for l in ['a', 'b', 'c']])
    <formula: a*b + a*c + b*c + a + b + c>
    >>>
    >>> print interactions([Term(l) for l in ['a', 'b', 'c']], order=list(range(5)))
    <formula: a*b + a*b*c + a*c + b*c + a + b + c>
    >>>

    """
    l = len(terms)

    values = {}

    if np.asarray(order).shape == ():
        order = lrange(1, int(order)+1)

    # First order

    for o in order:
        I = np.indices((l,)*(o))
        I.shape = (I.shape[0], np.product(I.shape[1:]))
        for m in range(I.shape[1]):

            # only keep combinations that have unique entries

            if (np.unique(I[:,m]).shape == I[:,m].shape and
                    np.alltrue(np.equal(np.sort(I[:,m]), I[:,m]))):
                ll = [terms[j] for j in I[:,m]]
                v = ll[0]
                for ii in range(len(ll)-1):
                    v *= ll[ii+1]
                values[tuple(I[:,m])] = v

    key = list(iterkeys(values))[0]
    value = values[key]
    del(values[key])

    for v in itervalues(values):
        value += v
    return value
开发者ID:statsmodels,项目名称:statsmodels,代码行数:54,代码来源:formula.py


示例17: summary

    def summary(self):
        buf = StringIO()

        rng = lrange(self.periods)
        for i in range(self.neqs):
            ppm = output.pprint_matrix(self.decomp[i], rng, self.names)

            buf.write('FEVD for %s\n' % self.names[i])
            buf.write(ppm + '\n')

        print(buf.getvalue())
开发者ID:bert9bert,项目名称:statsmodels,代码行数:11,代码来源:var_model.py


示例18: check_index

 def check_index(self, is_sorted=True, unique=True, index=None):
     """Sanity checks"""
     if not index:
         index = self.index
     if is_sorted:
         test = pd.DataFrame(lrange(len(index)), index=index)
         test_sorted = test.sort()
         if not test.index.equals(test_sorted.index):
             raise Exception('Data is not be sorted')
     if unique:
         if len(index) != len(index.unique()):
             raise Exception('Duplicate index entries')
开发者ID:cong1989,项目名称:statsmodels,代码行数:12,代码来源:grouputils.py


示例19: cat2dummy

def cat2dummy(y, nonseq=0):
    if nonseq or (y.ndim == 2 and y.shape[1] > 1):
        ycat, uniques, unitransl =  convertlabels(y, lrange(y.shape[1]))
    else:
        ycat = y.copy()
        ymin = y.min()
        uniques = np.arange(ymin,y.max()+1)
    if ycat.ndim == 1:
        ycat = ycat[:,np.newaxis]
    # this builds matrix nobs*ncat
    dummy = (ycat == uniques).astype(int)
    return dummy
开发者ID:Cassin123,项目名称:statsmodels,代码行数:12,代码来源:try_catdata.py


示例20: _influence_plot

def _influence_plot(results, influence, external=True, alpha=.05,
                    criterion="cooks", size=48, plot_alpha=.75, ax=None,
                    **kwargs):
    infl = influence
    fig, ax = utils.create_mpl_ax(ax)

    if criterion.lower().startswith('coo'):
        psize = infl.cooks_distance[0]
    elif criterion.lower().startswith('dff'):
        psize = np.abs(infl.dffits[0])
    else:
        raise ValueError("Criterion %s not understood" % criterion)

    # scale the variables
    #TODO: what is the correct scaling and the assumption here?
    #we want plots to be comparable across different plots
    #so we would need to use the expected distribution of criterion probably
    old_range = np.ptp(psize)
    new_range = size**2 - 8**2

    psize = (psize - psize.min()) * new_range/old_range + 8**2

    leverage = infl.hat_matrix_diag
    if external:
        resids = infl.resid_studentized_external
    else:
        resids = infl.resid_studentized

    from scipy import stats

    cutoff = stats.t.ppf(1.-alpha/2, results.df_resid)
    large_resid = np.abs(resids) > cutoff
    large_leverage = leverage > _high_leverage(results)
    large_points = np.logical_or(large_resid, large_leverage)

    ax.scatter(leverage, resids, s=psize, alpha=plot_alpha)

    # add point labels
    labels = results.model.data.row_labels
    if labels is None:
        labels = lrange(len(resids))
    ax = utils.annotate_axes(np.where(large_points)[0], labels,
                             lzip(leverage, resids),
                             lzip(-(psize/2)**.5, (psize/2)**.5), "x-large",
                             ax)

    #TODO: make configurable or let people do it ex-post?
    font = {"fontsize" : 16, "color" : "black"}
    ax.set_ylabel("Studentized Residuals", **font)
    ax.set_xlabel("H Leverage", **font)
    ax.set_title("Influence Plot", **font)
    return fig
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:52,代码来源:regressionplots.py



注:本文中的statsmodels.compat.python.lrange函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python python.lzip函数代码示例发布时间:2022-05-27
下一篇:
Python python.lmap函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap