• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python macrodata.load_pandas函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中statsmodels.datasets.macrodata.load_pandas函数的典型用法代码示例。如果您正苦于以下问题:Python load_pandas函数的具体用法?Python load_pandas怎么用?Python load_pandas使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了load_pandas函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

    def __init__(self):
        d = macrodata.load_pandas().data
        # growth rates
        d["gs_l_realinv"] = 400 * np.log(d["realinv"]).diff()
        d["gs_l_realgdp"] = 400 * np.log(d["realgdp"]).diff()
        d["lint"] = d["realint"].shift(1)
        d["tbilrate"] = d["tbilrate"].shift(1)

        d = d.dropna()
        self.d = d
        endogg = d["gs_l_realinv"]
        exogg = add_constant(d[["gs_l_realgdp", "lint"]])
        exogg2 = add_constant(d[["gs_l_realgdp", "tbilrate"]])
        exogg3 = add_constant(d[["gs_l_realgdp"]])

        res_ols = OLS(endogg, exogg).fit()
        res_ols2 = OLS(endogg, exogg2).fit()

        res_ols3 = OLS(endogg, exogg3).fit()

        self.res = res_ols
        self.res2 = res_ols2
        self.res3 = res_ols3
        self.endog = self.res.model.endog
        self.exog = self.res.model.exog
开发者ID:AnaMP,项目名称:statsmodels,代码行数:25,代码来源:test_diagnostic.py


示例2: test_stata_writer_pandas

def test_stata_writer_pandas():
    buf = BytesIO()
    dta = macrodata.load_pandas().data
    dta4 = dta.copy()
    for col in ('year','quarter'):
        dta[col] = dta[col].astype(np.int64)
        dta4[col] = dta4[col].astype(np.int32)
    # dta is int64 'i8'  given to Stata writer
    with pytest.warns(FutureWarning):
        writer = StataWriter(buf, dta)

    with warnings.catch_warnings(record=True) as w:
        writer.write_file()
        assert len(w) == 0
    buf.seek(0)

    with pytest.warns(FutureWarning):
        dta2 = genfromdta(buf)

    dta5 = DataFrame.from_records(dta2)
    # dta2 is int32 'i4'  returned from Stata reader

    if dta5.dtypes[1] is np.dtype('int64'):
        ptesting.assert_frame_equal(dta.reset_index(), dta5)
    else:
        # don't check index because it has different size, int32 versus int64
        ptesting.assert_frame_equal(dta4, dta5[dta5.columns[1:]])
开发者ID:bashtage,项目名称:statsmodels,代码行数:27,代码来源:test_foreign.py


示例3: setup_class

    def setup_class(cls):
        d = macrodata.load_pandas().data
        #growth rates
        d['gs_l_realinv'] = 400 * np.log(d['realinv']).diff()
        d['gs_l_realgdp'] = 400 * np.log(d['realgdp']).diff()
        d['lint'] = d['realint'].shift(1)
        d['tbilrate'] = d['tbilrate'].shift(1)

        d = d.dropna()
        cls.d = d
        endogg = d['gs_l_realinv']
        exogg = add_constant(d[['gs_l_realgdp', 'lint']])
        exogg2 = add_constant(d[['gs_l_realgdp', 'tbilrate']])
        exogg3 = add_constant(d[['gs_l_realgdp']])

        res_ols = OLS(endogg, exogg).fit()
        res_ols2 = OLS(endogg, exogg2).fit()

        res_ols3 = OLS(endogg, exogg3).fit()

        cls.res = res_ols
        cls.res2 = res_ols2
        cls.res3 = res_ols3
        cls.endog = cls.res.model.endog
        cls.exog = cls.res.model.exog
开发者ID:bashtage,项目名称:statsmodels,代码行数:25,代码来源:test_diagnostic.py


示例4: setup_class

    def setup_class(cls):
        d2 = macrodata.load_pandas().data
        g_gdp = 400*np.diff(np.log(d2['realgdp'].values))
        g_inv = 400*np.diff(np.log(d2['realinv'].values))
        exogg = add_constant(np.c_[g_gdp, d2['realint'][:-1].values], prepend=False)

        cls.res1 = res_ols = OLS(g_inv, exogg).fit()
开发者ID:bashtage,项目名称:statsmodels,代码行数:7,代码来源:test_robustcov.py


示例5: test_genfromdta_pandas

def test_genfromdta_pandas():
    from pandas.util.testing import assert_frame_equal
    dta = macrodata.load_pandas().data
    curdir = os.path.dirname(os.path.abspath(__file__))
    res1 = sm.iolib.genfromdta(curdir+'/../../datasets/macrodata/macrodata.dta',
                        pandas=True)
    res1 = res1.astype(float)
    assert_frame_equal(res1, dta)
开发者ID:Code-fish,项目名称:statsmodels,代码行数:8,代码来源:test_foreign.py


示例6: t_est_webuse_pandas

def t_est_webuse_pandas():
    # test copied and adjusted from iolib/tests/test_foreign
    from pandas.util.testing import assert_frame_equal
    from statsmodels.datasets import macrodata
    dta = macrodata.load_pandas().data
    base_gh = "http://github.com/statsmodels/statsmodels/raw/master/statsmodels/datasets/macrodata/"
    res1 = webuse('macrodata', baseurl=base_gh)
    res1 = res1.astype(float)
    assert_frame_equal(res1, dta)
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:9,代码来源:test_utils.py


示例7: test_hpfilter_pandas

def test_hpfilter_pandas():
    dta = macrodata.load_pandas().data
    index = Index(dates_from_range('1959Q1', '2009Q3'))
    dta.index = index
    cycle, trend = hpfilter(dta["realgdp"])
    ndcycle, ndtrend = hpfilter(dta['realgdp'].values)
    assert_equal(cycle.values, ndcycle)
    assert_equal(cycle.index[0], datetime(1959, 3, 31))
    assert_equal(cycle.index[-1], datetime(2009, 9, 30))
    assert_equal(cycle.name, "realgdp")
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:10,代码来源:test_filters.py


示例8: test_hpfilter_pandas

def test_hpfilter_pandas():
    dta = macrodata.load_pandas().data
    index = DatetimeIndex(start='1959-01-01', end='2009-10-01', freq='Q')
    dta.index = index
    cycle, trend = hpfilter(dta["realgdp"])
    ndcycle, ndtrend = hpfilter(dta['realgdp'].values)
    assert_equal(cycle.values, ndcycle)
    assert_equal(cycle.index[0], datetime(1959, 3, 31))
    assert_equal(cycle.index[-1], datetime(2009, 9, 30))
    assert_equal(cycle.name, "realgdp")
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:10,代码来源:test_filters.py


示例9: test_genfromdta_pandas

def test_genfromdta_pandas():
    from pandas.util.testing import assert_frame_equal
    dta = macrodata.load_pandas().data
    curdir = os.path.dirname(os.path.abspath(__file__))

    with pytest.warns(FutureWarning):
        res1 = genfromdta(curdir+'/../../datasets/macrodata/macrodata.dta',
                          pandas=True)

    res1 = res1.astype(float)
    assert_frame_equal(res1, dta.astype(float))
开发者ID:bashtage,项目名称:statsmodels,代码行数:11,代码来源:test_foreign.py


示例10: setup_class

    def setup_class(cls):
        d2 = macrodata.load_pandas().data
        g_gdp = 400*np.diff(np.log(d2['realgdp'].values))
        g_inv = 400*np.diff(np.log(d2['realinv'].values))
        exogg = add_constant(np.c_[g_gdp, d2['realint'][:-1].values], prepend=False)

        mod1 = GLSAR(g_inv, exogg, 1)
        cls.res = mod1.iterative_fit(5)

        from .results.macro_gr_corc_stata import results
        cls.results = results
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:11,代码来源:test_glsar_stata.py


示例11: test_webuse_pandas

def test_webuse_pandas():
    # test copied and adjusted from iolib/tests/test_foreign
    from pandas.util.testing import assert_frame_equal
    from statsmodels.datasets import macrodata
    dta = macrodata.load_pandas().data
    base_gh = "http://github.com/statsmodels/statsmodels/raw/master/statsmodels/datasets/macrodata/"
    internet_available = check_internet(base_gh)
    if not internet_available:
        raise SkipTest('Unable to retrieve file - skipping test')
    res1 = webuse('macrodata', baseurl=base_gh)
    res1 = res1.astype(float)
    assert_frame_equal(res1, dta)
开发者ID:dieterv77,项目名称:statsmodels,代码行数:12,代码来源:test_utils.py


示例12: test_grangercausality

    def test_grangercausality(self):
        # some example data
        mdata = macrodata.load_pandas().data
        mdata = mdata[['realgdp', 'realcons']].values
        data = mdata.astype(float)
        data = np.diff(np.log(data), axis=0)

        #R: lmtest:grangertest
        r_result = [0.243097, 0.7844328, 195, 2]  # f_test
        gr = grangercausalitytests(data[:, 1::-1], 2, verbose=False)
        assert_almost_equal(r_result, gr[2][0]['ssr_ftest'], decimal=7)
        assert_almost_equal(gr[2][0]['params_ftest'], gr[2][0]['ssr_ftest'], decimal=7)
开发者ID:haribharadwaj,项目名称:statsmodels,代码行数:12,代码来源:test_stattools.py


示例13: test_webuse_pandas

def test_webuse_pandas():
    # test copied and adjusted from iolib/tests/test_foreign
    from pandas.util.testing import assert_frame_equal
    from statsmodels.datasets import macrodata
    dta = macrodata.load_pandas().data
    base_gh = "https://github.com/statsmodels/statsmodels/raw/master/" \
              "statsmodels/datasets/macrodata/"
    internet_available = check_internet(base_gh)
    if not internet_available:
        pytest.skip('Unable to retrieve file - skipping test')
    try:
        res1 = webuse('macrodata', baseurl=base_gh)
    except (HTTPError, URLError, SSLError, timeout):
        pytest.skip('Failed with HTTP Error, these are random')
    res1 = res1.astype(float)
    assert_frame_equal(res1, dta.astype(float))
开发者ID:bashtage,项目名称:statsmodels,代码行数:16,代码来源:test_utils.py


示例14: setup_class

    def setup_class(cls):
        import pandas as pd
        from statsmodels.datasets import macrodata, co2
        dta = macrodata.load_pandas().data
        index = pd.PeriodIndex(start='1959Q1', end='2009Q3', freq='Q')
        dta.index = index
        cls.quarterly_data = dta.dropna()

        dta = co2.load_pandas().data
        dta['co2'] = dta.co2.interpolate()
        cls.monthly_data = dta.resample('M')
        # change in pandas 0.18 resample is deferred object
        if not isinstance(cls.monthly_data, (pd.DataFrame, pd.Series)):
            cls.monthly_data = cls.monthly_data.mean()

        cls.monthly_start_data = dta.resample('MS')
        if not isinstance(cls.monthly_start_data, (pd.DataFrame, pd.Series)):
            cls.monthly_start_data = cls.monthly_start_data.mean()
开发者ID:cong1989,项目名称:statsmodels,代码行数:18,代码来源:test_x13.py


示例15: setupClass

    def setupClass(cls):
        if not _have_x13:
            raise SkipTest("X13/X12 not available")

        import pandas as pd
        from statsmodels.datasets import macrodata, co2

        dta = macrodata.load_pandas().data
        dates = dates_from_range("1959Q1", "2009Q3")
        index = pd.DatetimeIndex(dates)
        dta.index = index
        cls.quarterly_data = dta.dropna()

        dta = co2.load_pandas().data
        dta["co2"] = dta.co2.interpolate()
        cls.monthly_data = dta.resample("M")

        cls.monthly_start_data = dta.resample("MS")
开发者ID:Clever-Boy,项目名称:statsmodels,代码行数:18,代码来源:test_x13.py


示例16: test_cfitz_pandas

def test_cfitz_pandas():
    # 1d
    dta = macrodata.load_pandas().data
    index = DatetimeIndex(start='1959-01-01', end='2009-10-01', freq='Q')
    dta.index = index
    cycle, trend = cffilter(dta["infl"])
    ndcycle, ndtrend = cffilter(dta['infl'].values)
    assert_allclose(cycle.values, ndcycle, rtol=1e-14)
    assert_equal(cycle.index[0], datetime(1959, 3, 31))
    assert_equal(cycle.index[-1], datetime(2009, 9, 30))
    assert_equal(cycle.name, "infl")

    #2d
    cycle, trend = cffilter(dta[["infl","unemp"]])
    ndcycle, ndtrend = cffilter(dta[['infl', 'unemp']].values)
    assert_allclose(cycle.values, ndcycle, rtol=1e-14)
    assert_equal(cycle.index[0], datetime(1959, 3, 31))
    assert_equal(cycle.index[-1], datetime(2009, 9, 30))
    assert_equal(cycle.columns.values, ["infl", "unemp"])
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:19,代码来源:test_filters.py


示例17: test_bking_pandas

def test_bking_pandas():
    # 1d
    dta = macrodata.load_pandas().data
    index = Index(dates_from_range('1959Q1', '2009Q3'))
    dta.index = index
    filtered = bkfilter(dta["infl"])
    nd_filtered = bkfilter(dta['infl'].values)
    assert_equal(filtered.values, nd_filtered)
    assert_equal(filtered.index[0], datetime(1962, 3, 31))
    assert_equal(filtered.index[-1], datetime(2006, 9, 30))
    assert_equal(filtered.name, "infl")

    #2d
    filtered = bkfilter(dta[["infl","unemp"]])
    nd_filtered = bkfilter(dta[['infl', 'unemp']].values)
    assert_equal(filtered.values, nd_filtered)
    assert_equal(filtered.index[0], datetime(1962, 3, 31))
    assert_equal(filtered.index[-1], datetime(2006, 9, 30))
    assert_equal(filtered.columns.values, ["infl", "unemp"])
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:19,代码来源:test_filters.py


示例18: test_cfitz_pandas

def test_cfitz_pandas():
    # 1d
    dta = macrodata.load_pandas().data
    index = Index(dates_from_range('1959Q1', '2009Q3'))
    dta.index = index
    cycle, trend = cffilter(dta["infl"])
    ndcycle, ndtrend = cffilter(dta['infl'].values)
    assert_allclose(cycle.values, ndcycle, rtol=1e-14)
    assert_equal(cycle.index[0], datetime(1959, 3, 31))
    assert_equal(cycle.index[-1], datetime(2009, 9, 30))
    assert_equal(cycle.name, "infl")

    #2d
    cycle, trend = cffilter(dta[["infl","unemp"]])
    ndcycle, ndtrend = cffilter(dta[['infl', 'unemp']].values)
    assert_allclose(cycle.values, ndcycle, rtol=1e-14)
    assert_equal(cycle.index[0], datetime(1959, 3, 31))
    assert_equal(cycle.index[-1], datetime(2009, 9, 30))
    assert_equal(cycle.columns.values, ["infl", "unemp"])
开发者ID:Bonfils-ebu,项目名称:statsmodels,代码行数:19,代码来源:test_filters.py


示例19: test_bking_pandas

def test_bking_pandas():
    # 1d
    dta = macrodata.load_pandas().data
    index = DatetimeIndex(start='1959-01-01', end='2009-10-01', freq='Q')
    dta.index = index
    filtered = bkfilter(dta["infl"])
    nd_filtered = bkfilter(dta['infl'].values)
    assert_equal(filtered.values, nd_filtered)
    assert_equal(filtered.index[0], datetime(1962, 3, 31))
    assert_equal(filtered.index[-1], datetime(2006, 9, 30))
    assert_equal(filtered.name, "infl")

    #2d
    filtered = bkfilter(dta[["infl","unemp"]])
    nd_filtered = bkfilter(dta[['infl', 'unemp']].values)
    assert_equal(filtered.values, nd_filtered)
    assert_equal(filtered.index[0], datetime(1962, 3, 31))
    assert_equal(filtered.index[-1], datetime(2006, 9, 30))
    assert_equal(filtered.columns.values, ["infl", "unemp"])
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:19,代码来源:test_filters.py


示例20: test_alignment

def test_alignment():
    #Fix Issue #206
    from statsmodels.regression.linear_model import OLS
    from statsmodels.datasets.macrodata import load_pandas

    d = load_pandas().data
    #growth rates
    gs_l_realinv = 400 * np.log(d['realinv']).diff().dropna()
    gs_l_realgdp = 400 * np.log(d['realgdp']).diff().dropna()
    lint = d['realint'][:-1] # incorrect indexing for test purposes

    endog = gs_l_realinv

    # re-index because they won't conform to lint
    realgdp = gs_l_realgdp.reindex(lint.index, method='bfill')
    data = dict(const=np.ones_like(lint), lrealgdp=realgdp, lint=lint)
    exog = pandas.DataFrame(data)

    # which index do we get??
    np.testing.assert_raises(ValueError, OLS, *(endog, exog))
开发者ID:philippmuller,项目名称:statsmodels,代码行数:20,代码来源:test_data.py



注:本文中的statsmodels.datasets.macrodata.load_pandas函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python utils.process_recarray函数代码示例发布时间:2022-05-27
下一篇:
Python macrodata.load函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap