• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python hazard_regression.PHReg类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中statsmodels.duration.hazard_regression.PHReg的典型用法代码示例。如果您正苦于以下问题:Python PHReg类的具体用法?Python PHReg怎么用?Python PHReg使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了PHReg类的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_fit_regularized

    def test_fit_regularized(self):

        # Data set sizes
        for n,p in (50,2),(100,5):

            # Penalty weights
            for js,s in enumerate([0,0.1]):

                coef_name = "coef_%d_%d_%d" % (n, p, js)
                coef = getattr(survival_enet_r_results, coef_name)

                fname = "survival_data_%d_%d.csv" % (n, p)
                time, status, entry, exog = self.load_file(fname)

                exog -= exog.mean(0)
                exog /= exog.std(0, ddof=1)

                mod = PHReg(time, exog, status=status, ties='breslow')
                rslt = mod.fit_regularized(alpha=s)

                # The agreement isn't very high, the issue may be on
                # their side.  They seem to use some approximations
                # that we are not using.
                assert_allclose(rslt.params, coef, rtol=0.3)

                # Smoke test for summary
                smry = rslt.summary()
开发者ID:soumyadsanyal,项目名称:statsmodels,代码行数:27,代码来源:test_phreg.py


示例2: test_formula

    def test_formula(self):

        np.random.seed(34234)
        time = 50 * np.random.uniform(size=200)
        status = np.random.randint(0, 2, 200).astype(np.float64)
        exog = np.random.normal(size=(200,4))
        entry = np.zeros_like(time)
        entry[0:10] = time[0:10] / 2

        df = pd.DataFrame({"time": time, "status": status,
                           "exog1": exog[:, 0], "exog2": exog[:, 1],
                           "exog3": exog[:, 2], "exog4": exog[:, 3],
                           "entry": entry})

        mod1 = PHReg(time, exog, status, entry=entry)
        rslt1 = mod1.fit()

        fml = "time ~ 0 + exog1 + exog2 + exog3 + exog4"
        mod2 = PHReg.from_formula(fml, df, status=status,
                                  entry=entry)
        rslt2 = mod2.fit()

        mod3 = PHReg.from_formula(fml, df, status="status",
                                  entry="entry")
        rslt3 = mod3.fit()

        assert_allclose(rslt1.params, rslt2.params)
        assert_allclose(rslt1.params, rslt3.params)
        assert_allclose(rslt1.bse, rslt2.bse)
        assert_allclose(rslt1.bse, rslt3.bse)
开发者ID:soumyadsanyal,项目名称:statsmodels,代码行数:30,代码来源:test_phreg.py


示例3: test_fit_regularized

    def test_fit_regularized(self):

        # Data set sizes
        for n,p in (50,2),(100,5):

            # Penalty weights
            for js,s in enumerate([0,0.1]):

                coef_name = "coef_%d_%d_%d" % (n, p, js)
                params = getattr(survival_enet_r_results, coef_name)

                fname = "survival_data_%d_%d.csv" % (n, p)
                time, status, entry, exog = self.load_file(fname)

                exog -= exog.mean(0)
                exog /= exog.std(0, ddof=1)

                model = PHReg(time, exog, status=status, ties='breslow')
                sm_result = model.fit_regularized(alpha=s)

                # The agreement isn't very high, the issue may be on
                # the R side.  See below for further checks.
                assert_allclose(sm_result.params, params, rtol=0.3)

                # The penalized log-likelihood that we are maximizing.
                def plf(params):
                    llf = model.loglike(params) / len(time)
                    L1_wt = 1
                    llf = llf - s * ((1 - L1_wt)*np.sum(params**2) / 2 + L1_wt*np.sum(np.abs(params)))
                    return llf

                # Confirm that we are doing better than glmnet.
                llf_r = plf(params)
                llf_sm = plf(sm_result.params)
                assert_equal(np.sign(llf_sm - llf_r), 1)
开发者ID:bashtage,项目名称:statsmodels,代码行数:35,代码来源:test_phreg.py


示例4: test_summary

    def test_summary(self):
        # smoke test
        np.random.seed(34234)
        time = 50 * np.random.uniform(size=200)
        status = np.random.randint(0, 2, 200).astype(np.float64)
        exog = np.random.normal(size=(200,4))

        mod = PHReg(time, exog, status)
        rslt = mod.fit()
        rslt.summary()
开发者ID:soumyadsanyal,项目名称:statsmodels,代码行数:10,代码来源:test_phreg.py


示例5: test_summary

    def test_summary(self):
        # smoke test
        np.random.seed(34234)
        time = 50 * np.random.uniform(size=200)
        status = np.random.randint(0, 2, 200).astype(np.float64)
        exog = np.random.normal(size=(200,4))

        mod = PHReg(time, exog, status)
        rslt = mod.fit()
        smry = rslt.summary()

        strata = np.kron(np.arange(50), np.ones(4))
        mod = PHReg(time, exog, status, strata=strata)
        rslt = mod.fit()
        smry = rslt.summary()
        msg = "3 strata dropped for having no events"
        assert_(msg in str(smry))

        groups = np.kron(np.arange(25), np.ones(8))
        mod = PHReg(time, exog, status)
        rslt = mod.fit(groups=groups)
        smry = rslt.summary()

        entry = np.random.uniform(0.1, 0.8, 200) * time
        mod = PHReg(time, exog, status, entry=entry)
        rslt = mod.fit()
        smry = rslt.summary()
        msg = "200 observations have positive entry times"
        assert_(msg in str(smry))
开发者ID:5267,项目名称:statsmodels,代码行数:29,代码来源:test_phreg.py


示例6: test_offset

    def test_offset(self):

        np.random.seed(34234)
        time = 50 * np.random.uniform(size=200)
        status = np.random.randint(0, 2, 200).astype(np.float64)
        exog = np.random.normal(size=(200,4))

        mod1 = PHReg(time, exog, status)
        rslt1 = mod1.fit()
        offset = exog[:,0] * rslt1.params[0]
        exog = exog[:, 1:]

        mod2 = PHReg(time, exog, status, offset=offset)
        rslt2 = mod2.fit()

        assert_allclose(rslt2.params, rslt1.params[1:])
开发者ID:soumyadsanyal,项目名称:statsmodels,代码行数:16,代码来源:test_phreg.py


示例7: test_predict_formula

    def test_predict_formula(self):

        n = 100
        np.random.seed(34234)
        time = 50 * np.random.uniform(size=n)
        status = np.random.randint(0, 2, n).astype(np.float64)
        exog = np.random.uniform(1, 2, size=(n, 2))

        df = pd.DataFrame({"time": time, "status": status,
                           "exog1": exog[:, 0], "exog2": exog[:, 1]})

        fml = "time ~ 0 + exog1 + np.log(exog2) + exog1*exog2"
        model1 = PHReg.from_formula(fml, df, status=status)
        result1 = model1.fit()

        from patsy import dmatrix
        dfp = dmatrix(model1.data.design_info.builder, df)

        pr1 = result1.predict()
        pr2 = result1.predict(exog=df)
        pr3 = model1.predict(result1.params, exog=dfp) # No standard errors
        pr4 = model1.predict(result1.params, cov_params=result1.cov_params(), exog=dfp)

        prl = (pr1, pr2, pr3, pr4)
        for i in range(4):
            for j in range(i):
                assert_allclose(prl[i].predicted_values, prl[j].predicted_values)

        prl = (pr1, pr2, pr4)
        for i in range(3):
            for j in range(i):
                assert_allclose(prl[i].standard_errors, prl[j].standard_errors)
开发者ID:soumyadsanyal,项目名称:statsmodels,代码行数:32,代码来源:test_phreg.py


示例8: test_predict

    def test_predict(self):
        # All smoke tests. We should be able to convert the lhr and hr
        # tests into real tests against R.  There are many options to
        # this function that may interact in complicated ways.  Only a
        # few key combinations are tested here.
        np.random.seed(34234)
        endog = 50 * np.random.uniform(size=200)
        status = np.random.randint(0, 2, 200).astype(np.float64)
        exog = np.random.normal(size=(200, 4))

        mod = PHReg(endog, exog, status)
        rslt = mod.fit()
        rslt.predict()
        for pred_type in "lhr", "hr", "cumhaz", "surv":
            rslt.predict(pred_type=pred_type)
            rslt.predict(endog=endog[0:10], pred_type=pred_type)
            rslt.predict(endog=endog[0:10], exog=exog[0:10, :], pred_type=pred_type)
开发者ID:mrajancsr,项目名称:statsmodels,代码行数:17,代码来源:test_phreg.py


示例9: do1

    def do1(self, fname, ties, entry_f, strata_f):

        # Read the test data.
        time, status, entry, exog = self.load_file(fname)
        n = len(time)

        vs = fname.split("_")
        n = int(vs[2])
        p = int(vs[3].split(".")[0])
        ties1 = ties[0:3]

        # Needs to match the kronecker statement in survival.R
        strata = np.kron(range(5), np.ones(n // 5))

        # No stratification or entry times
        mod = PHReg(time, exog, status, ties=ties)
        phrb = mod.fit(**args)
        coef_r, se_r, time_r, hazard_r = get_results(n, p, None, ties1)
        assert_allclose(phrb.params, coef_r, rtol=1e-3)
        assert_allclose(phrb.bse, se_r, rtol=1e-4)
        time_h, cumhaz, surv = phrb.baseline_cumulative_hazard[0]

        # Entry times but no stratification
        phrb = PHReg(time, exog, status, entry=entry,
                     ties=ties).fit(**args)
        coef, se, time_r, hazard_r = get_results(n, p, "et", ties1)
        assert_allclose(phrb.params, coef, rtol=1e-3)
        assert_allclose(phrb.bse, se, rtol=1e-3)

        # Stratification but no entry times
        phrb = PHReg(time, exog, status, strata=strata,
                      ties=ties).fit(**args)
        coef, se, time_r, hazard_r = get_results(n, p, "st", ties1)
        assert_allclose(phrb.params, coef, rtol=1e-4)
        assert_allclose(phrb.bse, se, rtol=1e-4)

        # Stratification and entry times
        phrb = PHReg(time, exog, status, entry=entry,
                     strata=strata, ties=ties).fit(**args)
        coef, se, time_r, hazard_r = get_results(n, p, "et_st", ties1)
        assert_allclose(phrb.params, coef, rtol=1e-3)
        assert_allclose(phrb.bse, se, rtol=1e-4)

        #smoke test
        time_h, cumhaz, surv = phrb.baseline_cumulative_hazard[0]
开发者ID:5267,项目名称:statsmodels,代码行数:45,代码来源:test_phreg.py


示例10: test_get_distribution

    def test_get_distribution(self):
        # Smoke test
        np.random.seed(34234)
        exog = np.random.normal(size=(200, 2))
        lin_pred = exog.sum(1)
        elin_pred = np.exp(-lin_pred)
        time = -elin_pred * np.log(np.random.uniform(size=200))

        mod = PHReg(time, exog)
        rslt = mod.fit()

        dist = rslt.get_distribution()

        fitted_means = dist.mean()
        true_means = elin_pred
        fitted_var = dist.var()
        fitted_sd = dist.std()
        sample = dist.rvs()
开发者ID:soumyadsanyal,项目名称:statsmodels,代码行数:18,代码来源:test_phreg.py


示例11: test_formula_args

    def test_formula_args(self):

        np.random.seed(34234)
        n = 200
        time = 50 * np.random.uniform(size=n)
        status = np.random.randint(0, 2, size=n).astype(np.float64)
        exog = np.random.normal(size=(200, 2))
        offset = np.random.uniform(size=n)
        entry = np.random.uniform(0, 1, size=n) * time

        df = pd.DataFrame({"time": time, "status": status, "x1": exog[:, 0],
                           "x2": exog[:, 1], "offset": offset, "entry": entry})
        model1 = PHReg.from_formula("time ~ x1 + x2", status="status", offset="offset",
                                    entry="entry", data=df)
        result1 = model1.fit()
        model2 = PHReg.from_formula("time ~ x1 + x2", status=df.status, offset=df.offset,
                                    entry=df.entry, data=df)
        result2 = model2.fit()
        assert_allclose(result1.params, result2.params)
        assert_allclose(result1.bse, result2.bse)
开发者ID:bashtage,项目名称:statsmodels,代码行数:20,代码来源:test_phreg.py


示例12: test_get_distribution

    def test_get_distribution(self):
        np.random.seed(34234)
        n = 200
        exog = np.random.normal(size=(n, 2))
        lin_pred = exog.sum(1)
        elin_pred = np.exp(-lin_pred)
        time = -elin_pred * np.log(np.random.uniform(size=n))
        status = np.ones(n)
        status[0:20] = 0
        strata = np.kron(range(5), np.ones(n // 5))

        mod = PHReg(time, exog, status=status, strata=strata)
        rslt = mod.fit()

        dist = rslt.get_distribution()

        fitted_means = dist.mean()
        true_means = elin_pred
        fitted_var = dist.var()
        fitted_sd = dist.std()
        sample = dist.rvs()
开发者ID:bashtage,项目名称:statsmodels,代码行数:21,代码来源:test_phreg.py


示例13: test_formula_cat_interactions

    def test_formula_cat_interactions(self):

        time = np.r_[1, 2, 3, 4, 5, 6, 7, 8, 9]
        status = np.r_[1, 1, 0, 0, 1, 0, 1, 1, 1]
        x1 = np.r_[1, 1, 1, 2, 2, 2, 3, 3, 3]
        x2 = np.r_[1, 2, 3, 1, 2, 3, 1, 2, 3]
        df = pd.DataFrame({"time": time, "status": status,
                           "x1": x1, "x2": x2})

        model1 = PHReg.from_formula("time ~ C(x1) + C(x2) + C(x1)*C(x2)", status="status",
                                    data=df)
        assert_equal(model1.exog.shape, [9, 8])
开发者ID:bashtage,项目名称:statsmodels,代码行数:12,代码来源:test_phreg.py


示例14: test_post_estimation

    def test_post_estimation(self):
        # All regression tests
        np.random.seed(34234)
        time = 50 * np.random.uniform(size=200)
        status = np.random.randint(0, 2, 200).astype(np.float64)
        exog = np.random.normal(size=(200,4))

        mod = PHReg(time, exog, status)
        rslt = mod.fit()
        mart_resid = rslt.martingale_residuals
        assert_allclose(np.abs(mart_resid).sum(), 120.72475743348433)

        w_avg = rslt.weighted_covariate_averages
        assert_allclose(np.abs(w_avg[0]).sum(0),
               np.r_[7.31008415, 9.77608674,10.89515885, 13.1106801])

        bc_haz = rslt.baseline_cumulative_hazard
        v = [np.mean(np.abs(x)) for x in bc_haz[0]]
        w = np.r_[23.482841556421608, 0.44149255358417017,
                  0.68660114081275281]
        assert_allclose(v, w)

        score_resid = rslt.score_residuals
        v = np.r_[ 0.50924792, 0.4533952, 0.4876718, 0.5441128]
        w = np.abs(score_resid).mean(0)
        assert_allclose(v, w)

        groups = np.random.randint(0, 3, 200)
        mod = PHReg(time, exog, status)
        rslt = mod.fit(groups=groups)
        robust_cov = rslt.cov_params()
        v = [0.00513432, 0.01278423, 0.00810427, 0.00293147]
        w = np.abs(robust_cov).mean(0)
        assert_allclose(v, w, rtol=1e-6)

        s_resid = rslt.schoenfeld_residuals
        ii = np.flatnonzero(np.isfinite(s_resid).all(1))
        s_resid = s_resid[ii, :]
        v = np.r_[0.85154336, 0.72993748, 0.73758071, 0.78599333]
        assert_allclose(np.abs(s_resid).mean(0), v)
开发者ID:soumyadsanyal,项目名称:statsmodels,代码行数:40,代码来源:test_phreg.py


示例15: _kernel_cumincidence

def _kernel_cumincidence(time, status, exog, kfunc, freq_weights,
                         dimred=True):
    """
    Calculates cumulative incidence functions using kernels.

    Parameters
    ----------
    time : array-like
        The observed time values
    status : array-like
        The status values.  status == 0 indicates censoring,
        status == 1, 2, ... are the events.
    exog : array-like
        Covariates such that censoring becomes independent of
        outcome times conditioned on the covariate values.
    kfunc : function
        A kernel function
    freq_weights : array-like
        Optional frequency weights
    dimred : boolean
        If True, proportional hazards regression models are used to
        reduce exog to two columns by predicting overall events and
        censoring in two separate models.  If False, exog is used
        directly for calculating kernel weights without dimension
        reduction.
    """

    # Reorder so time is ascending
    ii = np.argsort(time)
    time = time[ii]
    status = status[ii]
    exog = exog[ii, :]
    nobs = len(time)

    # Convert the unique times to ranks (0, 1, 2, ...)
    utime, rtime = np.unique(time, return_inverse=True)

    # Last index where each unique time occurs.
    ie = np.searchsorted(time, utime, side='right') - 1

    ngrp = int(status.max())

    # All-cause status
    statusa = (status >= 1).astype(np.float64)

    if freq_weights is not None:
        freq_weights = freq_weights / freq_weights.sum()

    ip = []
    sp = [None] * nobs
    n_risk = [None] * nobs
    kd = [None] * nobs
    for k in range(ngrp):
        status0 = (status == k + 1).astype(np.float64)

        # Dimension reduction step
        if dimred:
            sfe = PHReg(time, exog, status0).fit()
            fitval_e = sfe.predict().predicted_values
            sfc = PHReg(time, exog, 1 - status0).fit()
            fitval_c = sfc.predict().predicted_values
            exog2d = np.hstack((fitval_e[:, None], fitval_c[:, None]))
            exog2d -= exog2d.mean(0)
            exog2d /= exog2d.std(0)
        else:
            exog2d = exog

        ip0 = 0
        for i in range(nobs):

            if k == 0:
                kd1 = exog2d - exog2d[i, :]
                kd1 = kfunc(kd1)
                kd[i] = kd1

            # Get the local all-causes survival function
            if k == 0:
                denom = np.cumsum(kd[i][::-1])[::-1]
                num = kd[i] * statusa
                rat = num / denom
                tr = 1e-15
                ii = np.flatnonzero((denom < tr) & (num < tr))
                rat[ii] = 0
                ratc = 1 - rat
                ratc = np.clip(ratc, 1e-10, np.inf)
                lrat = np.log(ratc)
                prat = np.cumsum(lrat)[ie]
                sf = np.exp(prat)
                sp[i] = np.r_[1, sf[:-1]]
                n_risk[i] = denom[ie]

            # Number of cause-specific deaths at each unique time.
            d0 = np.bincount(rtime, weights=status0*kd[i],
                             minlength=len(utime))

            # The cumulative incidence function probabilities.  Carry
            # forward once the effective sample size drops below 1.
            ip1 = np.cumsum(sp[i] * d0 / n_risk[i])
            jj = len(ip1) - np.searchsorted(n_risk[i][::-1], 1)
            if jj < len(ip1):
#.........这里部分代码省略.........
开发者ID:BranYang,项目名称:statsmodels,代码行数:101,代码来源:_kernel_estimates.py


示例16: _kernel_survfunc

def _kernel_survfunc(time, status, exog, kfunc, freq_weights):
    """
    Estimate the marginal survival function under dependent censoring.

    Parameters
    ----------
    time : array-like
        The observed times for each subject
    status : array-like
        The status for each subject (1 indicates event, 0 indicates
        censoring)
    exog : array-like
        Covariates such that censoring is independent conditional on
        exog
    kfunc : function
        Kernel function
    freq_weights : array-like
        Optional frequency weights

    Returns
    -------
    probs : array-like
        The estimated survival probabilities
    times : array-like
        The times at which the survival probabilities are estimated

    References
    ----------
    Zeng, Donglin 2004. Estimating Marginal Survival Function by
    Adjusting for Dependent Censoring Using Many Covariates. The
    Annals of Statistics 32 (4): 1533 55.
    doi:10.1214/009053604000000508.
    http://arxiv.org/pdf/math/0409180.pdf
    """

    # Dimension reduction step
    sfe = PHReg(time, exog, status).fit()
    fitval_e = sfe.predict().predicted_values
    sfc = PHReg(time, exog, 1 - status).fit()
    fitval_c = sfc.predict().predicted_values
    exog2d = np.hstack((fitval_e[:, None], fitval_c[:, None]))

    n = len(time)
    ixd = np.flatnonzero(status == 1)

    # For consistency with standard KM, only compute the survival
    # function at the times of observed events.
    utime = np.unique(time[ixd])

    # Reorder everything so time is ascending
    ii = np.argsort(time)
    time = time[ii]
    status = status[ii]
    exog2d = exog2d[ii, :]

    # Last index where each evaluation time occurs.
    ie = np.searchsorted(time, utime, side='right') - 1

    if freq_weights is not None:
        freq_weights = freq_weights / freq_weights.sum()

    sprob = 0.
    for i in range(n):

        kd = exog2d - exog2d[i, :]
        kd = kfunc(kd)

        denom = np.cumsum(kd[::-1])[::-1]
        num = kd * status
        rat = num / denom
        tr = 1e-15
        ii = np.flatnonzero((denom < tr) & (num < tr))
        rat[ii] = 0
        ratc = 1 - rat
        ratc = np.clip(ratc, 1e-12, np.inf)
        lrat = np.log(ratc)
        prat = np.cumsum(lrat)[ie]
        prat = np.exp(prat)

        if freq_weights is None:
            sprob += prat
        else:
            sprob += prat * freq_weights[i]

    if freq_weights is None:
        sprob /= n

    return sprob, utime
开发者ID:BranYang,项目名称:statsmodels,代码行数:88,代码来源:_kernel_estimates.py



注:本文中的statsmodels.duration.hazard_regression.PHReg类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python api.glm函数代码示例发布时间:2022-05-27
下一篇:
Python discrete_model.Poisson类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap