• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python multitest.multipletests函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中statsmodels.stats.multitest.multipletests函数的典型用法代码示例。如果您正苦于以下问题:Python multipletests函数的具体用法?Python multipletests怎么用?Python multipletests使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了multipletests函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: significance_assessment

	def significance_assessment(self, cscPairA, cscPairD, leftregion, rightregion, meta_chrome, arm, AmpPat, DelPat, chrm_genebkt):
		if len(cscPairA.keys()) != 0 or len(cscPairD.keys()) != 0:
			scorelistA, scorelistD = [], []
			for i in range(0, self.num_permutation):				
				permute_regionA, permute_regionD = cna_utils.cycle_shift_permutation(self.dlcall.regionA[meta_chrome][arm], self.dlcall.regionD[meta_chrome][arm], leftregion, rightregion)				
				pedgesetA, pedgesetD, pedgetoPatient, pedgewA, pedgewD, pposA, pposD = cna_utils.formatEdgeId(AmpPat.union(DelPat), permute_regionA, permute_regionD)#, abbA, abbD) 
				pcscPairA, pcscPairD = self.RAIG_algo(pedgesetA, pedgesetD, pedgetoPatient, pedgewA, pedgewD, pposA, pposD, chrm_genebkt, len(AmpPat), len(DelPat))
				if len(pcscPairA.keys()) != 0:
					scorelistA.append(max([2*min(pcscPairA[cid]['lcount'],pcscPairA[cid]['rcount']) for cid in pcscPairA.keys()]))
				else:
					scorelistA.append(0)

				if len(pcscPairD.keys()) != 0:
					scorelistD.append(max([2*min(pcscPairD[cid]['lcount'],pcscPairD[cid]['rcount']) for cid in pcscPairD.keys()]))
				else:
					scorelistD.append(0)

		if len(cscPairA.keys()) != 0:
			pvals = list()
			cidlist = list()
			for cid in cscPairA.keys():
				csc_score = 2*min(cscPairA[cid]['lcount'],cscPairA[cid]['rcount'])
				count = 0
				for s in scorelistA:
					if s > csc_score:
						count += 1
				
				cscPairA[cid]['p-val'] = float(count)/self.num_permutation
				pvals.append(float(count)/self.num_permutation)
				cidlist.append(cid)
			
			corrected_pval = smm.multipletests(pvals, alpha=0.05, method='fdr_bh')[1]
			for i in range(len(cidlist)):
				cscPairA[cidlist[i]]['corrected-p-val'] = corrected_pval[i]
		
		if len(cscPairD.keys()) != 0:
			pvals = list()
			cidlist = list()
			for cid in cscPairD.keys():
				csc_score = 2*min(cscPairD[cid]['lcount'],cscPairD[cid]['rcount'])
				count = 0
				for s in scorelistD:
					if s > csc_score:
						count +=1
				
				cscPairD[cid]['p-val'] = float(count)/self.num_permutation
				pvals.append(float(count)/self.num_permutation)
				cidlist.append(cid)
			
			corrected_pval = smm.multipletests(pvals, alpha=0.05, method='fdr_bh')[1]
			for i in range(len(cidlist)):
				cscPairD[cidlist[i]]['corrected-p-val'] = corrected_pval[i]
开发者ID:BIGLabHYU,项目名称:RAIG,代码行数:52,代码来源:raig_pipeline.py


示例2: test_issorted

def test_issorted(method):
    # test that is_sorted keyword works correctly
    # the fdrcorrection functions are tested indirectly

    # data generated as random numbers np.random.beta(0.2, 0.5, size=10)
    pvals = np.array([31, 9958111, 7430818, 8653643, 9892855, 876, 2651691,
                      145836, 9931, 6174747]) * 1e-7
    sortind = np.argsort(pvals)
    sortrevind = sortind.argsort()
    pvals_sorted = pvals[sortind]

    res1 = multipletests(pvals, method=method, is_sorted=False)
    res2 = multipletests(pvals_sorted, method=method, is_sorted=True)
    assert_equal(res2[0][sortrevind], res1[0])
    assert_allclose(res2[0][sortrevind], res1[0], rtol=1e-10)
开发者ID:statsmodels,项目名称:statsmodels,代码行数:15,代码来源:test_multi.py


示例3: multi_correct

def multi_correct(data, meth='fdr_bh'):
    """
    Run fdr correction on nodes of interest contained in an array of p values. 
    
    Parameters:
    -----------
    data : numpy array
        nnodes x nnodes array containing p values of correlation between each node
    noi_idx : numpy
        indices (applicable to both row and column) of nodes of interest. This
        reduces the number of nodes corrected for
    meth : str
        Method of correction. Options are: 
            `bonferroni` : one-step correction
            `sidak` : on-step correction
            `holm-sidak` :
            `holm` :
            `simes-hochberg` :
            `hommel` :
            `fdr_bh` : Benjamini/Hochberg (default)
            `fdr_by` : Benjamini/Yekutieli 
    
    Returns:
    ----------
    fdr_corrected : numpy array
        array containing p values corrected with fdr
    """
    rej, corrp, alpha_sidak, alpha_bonnf = smm.multipletests(data, 
                                                            alpha=0.05, 
                                                            method=meth)
    return corrp
开发者ID:jelman,项目名称:GIFT_analysis,代码行数:31,代码来源:gift_analysis.py


示例4: get_p_values

def get_p_values(dat):
    #%%
    feat_x = dat[dat['region']=='Before']
    feat_y = dat[dat['region']=='After']
        
    p_values = []
    for feat in feat_avg_names:
        x = feat_x[feat]
        x = x.dropna()
        y = feat_y[feat].dropna()
        
        if x.size > 0 and y.size > 0:
            _, p = ttest_ind(x, y)
        else:
            p = np.nan
        p_values.append((feat, p))
    
    feats, p_val = zip(*p_values)
    p_values = pd.Series(p_val, index=feats).dropna()
    p_values = p_values.sort_values(ascending=True)
    
    if p_values.size > 0:
        reject, pvals_corrected, alphacSidak, alphacBonf = \
            smm.multipletests(p_values.values, method = 'fdr_tsbky')
            
        pvals_corrected = pd.Series(pvals_corrected, index=p_values.index)
    else:
        pvals_corrected = pd.Series()
    #%%
    return p_values, pvals_corrected
开发者ID:ver228,项目名称:Work_In_Progress,代码行数:30,代码来源:find_pulses.py


示例5: test_hommel

def test_hommel():
    #tested agains R stats p_adjust(pval0, method='hommel')
    pval0 = np.array(
              [ 0.00116,  0.00924,  0.01075,  0.01437,  0.01784,  0.01918,
                0.02751,  0.02871,  0.03054,  0.03246,  0.04259,  0.06879,
                0.0691 ,  0.08081,  0.08593,  0.08993,  0.09386,  0.09412,
                0.09718,  0.09758,  0.09781,  0.09788,  0.13282,  0.20191,
                0.21757,  0.24031,  0.26061,  0.26762,  0.29474,  0.32901,
                0.41386,  0.51479,  0.52461,  0.53389,  0.56276,  0.62967,
                0.72178,  0.73403,  0.87182,  0.95384])

    result_ho = np.array(
              [ 0.0464            ,  0.25872           ,  0.29025           ,
                0.3495714285714286,  0.41032           ,  0.44114           ,
                0.57771           ,  0.60291           ,  0.618954          ,
                0.6492            ,  0.7402725000000001,  0.86749           ,
                0.86749           ,  0.8889100000000001,  0.8971477777777778,
                0.8993            ,  0.9175374999999999,  0.9175374999999999,
                0.9175374999999999,  0.9175374999999999,  0.9175374999999999,
                0.9175374999999999,  0.95384           ,  0.9538400000000001,
                0.9538400000000001,  0.9538400000000001,  0.9538400000000001,
                0.9538400000000001,  0.9538400000000001,  0.9538400000000001,
                0.9538400000000001,  0.9538400000000001,  0.9538400000000001,
                0.9538400000000001,  0.9538400000000001,  0.9538400000000001,
                0.9538400000000001,  0.9538400000000001,  0.9538400000000001,
                0.9538400000000001])

    rej, pvalscorr, _, _ = multipletests(pval0, alpha=0.1, method='ho')
    assert_almost_equal(pvalscorr, result_ho, 15)
    assert_equal(rej, result_ho < 0.1)  #booleans
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:30,代码来源:test_multi.py


示例6: DEGI

def DEGI(gctfile,clsfile,number):

    #open and save input files
    with open(gctfile) as gct:
        gct=numpy.genfromtxt(gct,dtype=None,delimiter="\t",missing_values="NA",invalid_raise=False,skip_header=2)
        gct_exp=gct[1:,2:].astype(float) #matrix of expression values
        gct_genes=gct[1:,1] #list of gene names
    with open(clsfile) as label:
        label=label.read().splitlines()
        label=label[2].split() #list of class labels

    #initialize empty list for p-values
    pvals=[]

    #first, caluclate difference in means with original labels
    for i in range(0,len(gct_genes)):
        class0=[]
        class1=[]
        for j in range(0,len(label)):
            if label[j]=="0":
                class0.append(gct_exp[i,j])
            if label[j]=="1":
                class1.append(gct_exp[i,j])
        mean0=sum(class0)/len(class0)
        mean1=sum(class1)/len(class1)
        null_diff=abs(mean0-mean1)

        #then, calculate difference in means with permutated labels
        #p-value is determined by the proportion of permutated differences that are less than the original difference
        greater=0.
        for k in range(0,number):
            label_shuffle=numpy.random.permutation(label)
            class0_shuffle=[]
            class1_shuffle=[]
            for j in range(0,len(label_shuffle)):
                if label_shuffle[j]=="0":
                    class0_shuffle.append(gct_exp[i,j])
                if label_shuffle[j]=="1":
                    class1_shuffle.append(gct_exp[i,j])
            mean0_shuffle=sum(class0_shuffle)/len(class0_shuffle)
            mean1_shuffle=sum(class1_shuffle)/len(class1_shuffle)
            alt_diff=abs(mean0_shuffle-mean1_shuffle)
            if null_diff>=alt_diff:
                greater+=1.
        pvals.append(greater/number)

    #correct for multiple hypothesis tests using benjamini-hochberg
    bh=smm.multipletests(pvals,alpha=0.05,method='fdr_bh')
    bh_sig=bh[0]
    bh_pvals=bh[1].astype(str)

    sig=0
    for i in range(0,len(bh_sig)):
        if bh_sig[i]==True:
            print gct_genes[i]+" is differentially expressed.\nThe adjusted p-value is "+bh_pvals[i]+"\n"
            sig+=1
    if sig==0:
        print "There are no differentially expressed genes."
开发者ID:CBB752Spring2016,项目名称:mbb752_2.5_R,代码行数:58,代码来源:DEGI.py


示例7: pval_corrected

    def pval_corrected(self, method=None):
        '''p-values corrected for multiple testing problem

        This uses the default p-value correction of the instance stored in
        ``self.multitest_method`` if method is None.

        '''
        import statsmodels.stats.multitest as smt
        if method is None:
            method = self.multitest_method
        #TODO: breaks with method=None
        return smt.multipletests(self.pvals_raw, method=method)[1]
开发者ID:ChadFulton,项目名称:statsmodels,代码行数:12,代码来源:base.py


示例8: test_pvalcorrection_reject

def test_pvalcorrection_reject(alpha, method, ii):
    # consistency test for reject boolean and pvalscorr

    pval1 = np.hstack((np.linspace(0.0001, 0.0100, ii),
                       np.linspace(0.05001, 0.11, 10 - ii)))
    # using .05001 instead of 0.05 to avoid edge case issue #768
    reject, pvalscorr = multipletests(pval1, alpha=alpha,
                                      method=method)[:2]

    msg = 'case %s %3.2f rejected:%d\npval_raw=%r\npvalscorr=%r' % (
                     method, alpha, reject.sum(), pval1, pvalscorr)
    assert_equal(reject, pvalscorr <= alpha, err_msg=msg)
开发者ID:statsmodels,项目名称:statsmodels,代码行数:12,代码来源:test_multi.py


示例9: test_multi_pvalcorrection_rmethods

    def test_multi_pvalcorrection_rmethods(self, key, val):
        # test against R package multtest mt.rawp2adjp

        res_multtest = self.res2
        pval0 = res_multtest[:, 0]

        if val[1] in self.methods:
            reject, pvalscorr = multipletests(pval0,
                                              alpha=self.alpha,
                                              method=val[1])[:2]
            assert_almost_equal(pvalscorr, res_multtest[:, val[0]], 15)
            assert_equal(reject, pvalscorr <= self.alpha)
开发者ID:statsmodels,项目名称:statsmodels,代码行数:12,代码来源:test_multi.py


示例10: get_score_df

    def get_score_df(self, correction_method=None):
        '''

        :param correction_method: str or None, correction method from statsmodels.stats.multitest.multipletests
         'fdr_bh' is recommended.
        :return: pd.DataFrame
        '''
        # From https://people.kth.se/~lang/Effect_size.pdf
        # Shinichi Nakagawa1 and Innes C. Cuthill. 2007. In Biological Reviews 82.
        X = self._get_X().astype(np.float64)
        X = X / X.sum(axis=1)
        cat_X, ncat_X = self._get_cat_and_ncat(X)
        n1, n2 = float(cat_X.shape[1]), float(ncat_X.shape[1])
        n = n1 + n2
        m1 = cat_X.mean(axis=0).A1
        m2 = ncat_X.mean(axis=0).A1
        v1 = cat_X.var(axis=0).A1
        v2 = ncat_X.var(axis=0).A1
        s_pooled = np.sqrt(((n2 - 1) * v2 + (n1 - 1) * v1) / (n - 2.))
        cohens_d = (m1 - m2) / s_pooled
        cohens_d_se = np.sqrt(((n - 1.) / (n - 3)) * (4. / n) * (1 + np.square(cohens_d)))
        cohens_d_z = cohens_d / cohens_d_se
        cohens_d_p = norm.sf(cohens_d_z)
        hedges_r = cohens_d * (1 - 3. / ((4. * (n - 2)) - 1))
        hedges_r_se = np.sqrt(n / (n1 * n2) + np.square(hedges_r) / (n - 2.))
        hedges_r_z = hedges_r / hedges_r_se
        hedges_r_p = norm.sf(hedges_r_z)

        score_df = pd.DataFrame({
            'cohens_d': cohens_d,
            'cohens_d_se': cohens_d_se,
            'cohens_d_z': cohens_d_z,
            'cohens_d_p': cohens_d_p,
            'hedges_r': hedges_r,
            'hedges_r_se': hedges_r_se,
            'hedges_r_z': hedges_r_z,
            'hedges_r_p': hedges_r_p,
            'm1': m1,
            'm2': m2,
        }, index=self.corpus_.get_terms()).fillna(0)
        if correction_method is not None:
            from statsmodels.stats.multitest import multipletests
            score_df['hedges_r_p_corr'] = 0.5
            for method in ['cohens_d', 'hedges_r']:
                score_df[method + '_p_corr'] = 0.5
                score_df.loc[(score_df['m1'] != 0) | (score_df['m2'] != 0), method + '_p_corr'] = (
                    multipletests(score_df.loc[(score_df['m1'] != 0) | (score_df['m2'] != 0), method + '_p'],
                                  method=correction_method)[1]
                )

        return score_df
开发者ID:JasonKessler,项目名称:scattertext,代码行数:51,代码来源:CohensD.py


示例11: is_from_null

    def is_from_null(self,alpha,samples,chane_prob):
        dims = samples.shape[1]
        boots = 10*int(dims/alpha)
        pvals = np.zeros(dims)
        for dim in range(dims):
            U,_ = self.tester.get_statistic_multiple_dim(samples,dim)
            p = self.tester.compute_pvalues_for_processes(U,chane_prob,boots)
            pvals[dim] = p

        print(pvals)
        alt_is_true, pvals_corrected,_,_ =  multipletests(pvals,alpha,method='holm')



        return any(alt_is_true),pvals_corrected
开发者ID:kacperChwialkowski,项目名称:mcmc,代码行数:15,代码来源:quadratic_time.py


示例12: test_pvalcorrection_reject

def test_pvalcorrection_reject():
    # consistency test for reject boolean and pvalscorr

    for alpha in [0.01, 0.05, 0.1]:
        for method in ['b', 's', 'sh', 'hs', 'h', 'hommel', 'fdr_i', 'fdr_n',
                       'fdr_tsbky', 'fdr_tsbh', 'fdr_gbs']:
            for ii in range(11):
                pval1 = np.hstack((np.linspace(0.0001, 0.0100, ii),
                                   np.linspace(0.05001, 0.11, 10 - ii)))
                # using .05001 instead of 0.05 to avoid edge case issue #768
                reject, pvalscorr = multipletests(pval1, alpha=alpha,
                                                  method=method)[:2]
                #print 'reject.sum', v[1], reject.sum()
                msg = 'case %s %3.2f rejected:%d\npval_raw=%r\npvalscorr=%r' % (
                                 method, alpha, reject.sum(), pval1, pvalscorr)
                assert_equal(reject, pvalscorr <= alpha, err_msg=msg)
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:16,代码来源:test_multi.py


示例13: correct_enrichment_pvalues

def correct_enrichment_pvalues(enrichments, method, sig_cutoff):
    corrected_enrichments = []
    for enrichment in enrichments:
        pvalues = enrichment.values()
        gene_set_names = enrichment.keys()
        if method == 'none' or method is None:
            corrected_pvalues = pvalues
            reject = pvalues > sig_cutoff
        else:
            reject, corrected_pvalues, _, _ = smm.multipletests(pvalues,
                                                        alpha=sig_cutoff,
                                                        method=method)
        accepted_indices = np.where(reject)[0]
        accepted_pvalues = dict([(gene_set_names[i], corrected_pvalues[i]) 
                                    for i in accepted_indices])
        corrected_enrichments.append(accepted_pvalues)
    return corrected_enrichments
开发者ID:dimenwarper,项目名称:genoracle,代码行数:17,代码来源:enrichment.py


示例14: __call__

    def __call__(self, track):
        print "Reading %s" % track
        data = pandas.read_csv(self.openFile(track),
                               header=0,
                               names=["contig", "start", "p"],
                               sep="\t")
        print "Done"
        data["qvalues"] = multipletests(data["p"], method="fdr_bh")[1]

        output = dict()

        output["Bases"] = data.shape[0]
        output["Significant"] = (data["qvalues"] < 0.01).sum()
        output["Fraction_Significant"] = \
            float(output["Significant"])/output["Bases"]

        return output
开发者ID:CGATOxford,项目名称:UMI-tools_pipelines,代码行数:17,代码来源:clusters.py


示例15: test_multi_pvalcorrection

def test_multi_pvalcorrection():
    #test against R package multtest mt.rawp2adjp
    #because of sort this doesn't check correct sequence - TODO: rewrite DONE
    rmethods = {'rawp':(0,'pval'), 'Bonferroni':(1,'b'), 'Holm':(2,'h'),
                'Hochberg':(3,'sh'), 'SidakSS':(4,'s'), 'SidakSD':(5,'hs'),
                'BH':(6,'fdr_i'), 'BY':(7,'fdr_n')}

    for k,v in rmethods.items():
        if v[1] in ['b', 's', 'sh', 'hs', 'h', 'fdr_i', 'fdr_n']:
            #pvalscorr = np.sort(multipletests(pval0, alpha=0.1, method=v[1])[1])
            r_sortindex = [6, 8, 9, 7, 5, 1, 2, 4, 0, 3]
            pvalscorr = multipletests(pval0, alpha=0.1, method=v[1])[1][r_sortindex]
            assert_almost_equal(pvalscorr, res_multtest[:,v[0]], 15)

    pvalscorr = np.sort(fdrcorrection(pval0, method='n')[1])
    assert_almost_equal(pvalscorr, res_multtest[:,7], 15)
    pvalscorr = np.sort(fdrcorrection(pval0, method='i')[1])
    assert_almost_equal(pvalscorr, res_multtest[:,6], 15)
开发者ID:Code-fish,项目名称:statsmodels,代码行数:18,代码来源:test_multi.py


示例16: test_multi_pvalcorrection

    def test_multi_pvalcorrection(self):
        #test against R package multtest mt.rawp2adjp

        res_multtest = self.res2
        pval0 = res_multtest[:,0]

        for k,v in iteritems(rmethods):
            if v[1] in self.methods:
                reject, pvalscorr = multipletests(pval0,
                                                  alpha=self.alpha,
                                                  method=v[1])[:2]
                assert_almost_equal(pvalscorr, res_multtest[:,v[0]], 15)
                assert_equal(reject, pvalscorr <= self.alpha)

        pvalscorr = np.sort(fdrcorrection(pval0, method='n')[1])
        assert_almost_equal(pvalscorr, res_multtest[:,7], 15)
        pvalscorr = np.sort(fdrcorrection(pval0, method='i')[1])
        assert_almost_equal(pvalscorr, res_multtest[:,6], 15)
开发者ID:0ceangypsy,项目名称:statsmodels,代码行数:18,代码来源:test_multi.py


示例17: compute_q_values

def compute_q_values(contingencies, bonferroni_count=None):
    """Compute p and q-values"""
    logging.info("Computing p and q-values")
    target_event_pairs = []
    p_vals = []
    for (target, event), table in contingencies.iteritems():
        chi2, pvalue, ddof, expected = stats.chi2_contingency(table)
        target_event_pairs.append((target, event))
        p_vals.append(pvalue)
    #Calculate the qvalue (p-adjusted FDR)
    if bonferroni_count:
        logging.info("Using Bonferroni correction for q-value calculations")
        q_vals = [pval * float(bonferroni_count) for pval in p_vals]
    else:
        logging.info("Using Holm correction for q-value calculations")
        reject_array, q_vals, alpha_c_sidak, alpha_c_bonf = multipletests(
            p_vals, alpha=0.05, method='holm')
    return target_event_pairs, p_vals, q_vals
开发者ID:mmysinger,项目名称:labware,代码行数:18,代码来源:ef_analysis.py


示例18: test_associations

def test_associations(data, test_types=("two-sided",), threshold=None, corr_method="fdr_bh", associations=None):
    if associations is None:
        associations = itertools.combinations(data.columns, 2)

    row_gen = (
        (a, b, test_type, test_association(data[[a, b]], test_type=test_type))
        for a, b in associations
        for test_type in test_types
    )

    frame = pd.DataFrame(row_gen, columns=["a", "b", "test_type", "p_value"])
    frame["p_value_adj"] = multipletests(frame["p_value"], method=corr_method)[1]
    frame.sort_values(by="p_value_adj", inplace=True)

    if threshold is not None:
        frame = frame.query("p_value_adj <= {}".format(threshold))

    return frame
开发者ID:jrderuiter,项目名称:ngs-tk,代码行数:18,代码来源:assocations.py


示例19: calc_kruskal

def calc_kruskal(x, sample_num_l, alpha):
	tmp_input_l = split_list(x[1:],sample_num_l) #ignore id column

	try:
		h,p = stats.kruskal(*tmp_input_l) #run kruskal-wallist test
#		h,p = stats.f_oneway(*tmp_input_l)
	except ValueError:
		return x+['1.00','0']
	
	if math.isnan(p) :
		return x+['1.00','0']	

	result = []

	if p < alpha :
		num = len(sample_num_l)
		
		pval_l = []
		
		for i in range(num-1):
			for j in range(i+1, num):
				tmp_p = 0.0
				try:
					tmp_u, tmp_p = stats.mannwhitneyu(tmp_input_l[i],tmp_input_l[j]) #This is one-sied result
				except ValueError :
					tmp_p = 0.5

				pval_l.append(tmp_p*2)
		
		rej = smm.multipletests(pval_l, alpha=alpha, method='fdr_bh')[0] # fdr correction
		
		flag = 1

		for i in range(len(rej)):
			if ~rej[i] :
				flag = 0
				break

		result = [`p`,`flag`]

	else:
		result = [`p`,'0']
	
	return x+result
开发者ID:biovlab,项目名称:biovlab_mcpg_snp_express,代码行数:44,代码来源:kruskal_ver2.py


示例20: main

def main(table_fpath, fdr=.1):
   
    pvalues = []
    with open(table_fpath) as tables_file:
        for line in tables_file:
            if '#' in line:
                continue
            spl = line.split('\t')
            if len(spl) == 5:
                pvalues.extend(float(x) for x in spl[1:])
    
    pvalues = np.asarray(pvalues)
    reject = multitest.multipletests(pvalues, fdr, method='fdr_bh')[0]
    n = reject.shape[0]
    X = reject.reshape((n // 4, 4))[:, 0:2]
    P = pvalues.reshape((n // 4, 4))[:, 0:2]
    
    for row in P:
        print(row < .05)
开发者ID:flaviovdf,项目名称:competition-models,代码行数:19,代码来源:prey_detection_fdr_correction.py



注:本文中的statsmodels.stats.multitest.multipletests函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python proportion.proportion_confint函数代码示例发布时间:2022-05-27
下一篇:
Python multicomp.MultiComparison类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap