• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python factorials.binomial函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.functions.combinatorial.factorials.binomial函数的典型用法代码示例。如果您正苦于以下问题:Python binomial函数的具体用法?Python binomial怎么用?Python binomial使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了binomial函数的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _calc_bernoulli

 def _calc_bernoulli(n):
     s = 0
     a = int(binomial(n + 3, n - 6))
     for j in range(1, n//6 + 1):
         s += a * bernoulli(n - 6*j)
         # Avoid computing each binomial coefficient from scratch
         a *= _product(n - 6 - 6*j + 1, n - 6*j)
         a //= _product(6*j + 4, 6*j + 9)
     if n % 6 == 4:
         s = -Rational(n + 3, 6) - s
     else:
         s = Rational(n + 3, 3) - s
     return s / binomial(n + 3, n)
开发者ID:SungSingSong,项目名称:sympy,代码行数:13,代码来源:numbers.py


示例2: rule

    def rule(n, k):
        coeff, rewrite = S.One, False

        cn, _n = n.as_coeff_Add()

        if _n and cn.is_Integer and cn:
            coeff *= _rf(_n + 1, cn)/_rf(_n - k + 1, cn)
            rewrite = True
            n = _n

        # this sort of binomial has already been removed by
        # rising factorials but is left here in case the order
        # of rule application is changed
        if k.is_Add:
            ck, _k = k.as_coeff_Add()
            if _k and ck.is_Integer and ck:
                coeff *= _rf(n - ck - _k + 1, ck)/_rf(_k + 1, ck)
                rewrite = True
                k = _k

        if count_ops(k) > count_ops(n - k):
            rewrite = True
            k = n - k

        if rewrite:
            return coeff*binomial(n, k)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:26,代码来源:gammasimp.py


示例3: _eval_rewrite_as_Sum

    def _eval_rewrite_as_Sum(self, arg):
        if arg.is_even:
            k = Dummy("k", integer=True)
            j = Dummy("j", integer=True)
            n = self.args[0] / 2
            Em = (S.ImaginaryUnit * C.Sum(C.Sum(binomial(k, j) * ((-1)**j * (k - 2*j)**(2*n + 1)) /
                  (2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1)))

            return Em
开发者ID:cstoudt,项目名称:sympy,代码行数:9,代码来源:numbers.py


示例4: get_size

 def get_size(self):
     r"""
     Returns
     -------
     size: int
         The size of set T. Set T is the set of all possible
         monomials of the n variables for degree equal to the
         degree_m
     """
     return binomial(self.degree_m + self.n - 1, self.n - 1)
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:10,代码来源:multivariate_resultants.py


示例5: _stirling1

def _stirling1(n, k):
    if n == k == 0:
        return S.One
    if 0 in (n, k):
        return S.Zero
    n1 = n - 1

    # some special values
    if n == k:
        return S.One
    elif k == 1:
        return factorial(n1)
    elif k == n1:
        return binomial(n, 2)
    elif k == n - 2:
        return (3*n - 1)*binomial(n, 3)/4
    elif k == n - 3:
        return binomial(n, 2)*binomial(n, 4)

    # general recurrence
    return n1*_stirling1(n1, k) + _stirling1(n1, k - 1)
开发者ID:SungSingSong,项目名称:sympy,代码行数:21,代码来源:numbers.py


示例6: _stirling2

def _stirling2(n, k):
    if n == k == 0:
        return S.One
    if 0 in (n, k):
        return S.Zero
    n1 = n - 1

    # some special values
    if k == n1:
        return binomial(n, 2)
    elif k == 2:
        return 2**n1 - 1

    # general recurrence
    return k*_stirling2(n1, k) + _stirling2(n1, k - 1)
开发者ID:SungSingSong,项目名称:sympy,代码行数:15,代码来源:numbers.py


示例7: eval

    def eval(cls, n, sym=None):
        if n.is_Number:
            if n.is_Integer and n.is_nonnegative:
                if n is S.Zero:
                    return S.One
                elif n is S.One:
                    if sym is None:
                        return -S.Half
                    else:
                        return sym - S.Half
                # Bernoulli numbers
                elif sym is None:
                    if n.is_odd:
                        return S.Zero
                    n = int(n)
                    # Use mpmath for enormous Bernoulli numbers
                    if n > 500:
                        p, q = bernfrac(n)
                        return Rational(int(p), int(q))
                    case = n % 6
                    highest_cached = cls._highest[case]
                    if n <= highest_cached:
                        return cls._cache[n]
                    # To avoid excessive recursion when, say, bernoulli(1000) is
                    # requested, calculate and cache the entire sequence ... B_988,
                    # B_994, B_1000 in increasing order
                    for i in range(highest_cached + 6, n + 6, 6):
                        b = cls._calc_bernoulli(i)
                        cls._cache[i] = b
                        cls._highest[case] = i
                    return b
                # Bernoulli polynomials
                else:
                    n, result = int(n), []
                    for k in range(n + 1):
                        result.append(binomial(n, k)*cls(k)*sym**(n - k))
                    return Add(*result)
            else:
                raise ValueError("Bernoulli numbers are defined only"
                                 " for nonnegative integer indices.")

        if sym is None:
            if n.is_odd and (n - 1).is_positive:
                return S.Zero
开发者ID:SungSingSong,项目名称:sympy,代码行数:44,代码来源:numbers.py


示例8: f

    def f(rv):
        if not rv.is_Mul:
            return rv
        rvd = rv.as_powers_dict()
        nd_fact_args = [[], []] # numerator, denominator

        for k in rvd:
            if isinstance(k, factorial) and rvd[k].is_Integer:
                if rvd[k].is_positive:
                    nd_fact_args[0].extend([k.args[0]]*rvd[k])
                else:
                    nd_fact_args[1].extend([k.args[0]]*-rvd[k])
                rvd[k] = 0
        if not nd_fact_args[0] or not nd_fact_args[1]:
            return rv

        hit = False
        for m in range(2):
            i = 0
            while i < len(nd_fact_args[m]):
                ai = nd_fact_args[m][i]
                for j in range(i + 1, len(nd_fact_args[m])):
                    aj = nd_fact_args[m][j]

                    sum = ai + aj
                    if sum in nd_fact_args[1 - m]:
                        hit = True

                        nd_fact_args[1 - m].remove(sum)
                        del nd_fact_args[m][j]
                        del nd_fact_args[m][i]

                        rvd[binomial(sum, ai if count_ops(ai) <
                                count_ops(aj) else aj)] += (
                                -1 if m == 0 else 1)
                        break
                else:
                    i += 1

        if hit:
            return Mul(*([k**rvd[k] for k in rvd] + [factorial(k)
                    for k in nd_fact_args[0]]))/Mul(*[factorial(k)
                    for k in nd_fact_args[1]])
        return rv
开发者ID:asmeurer,项目名称:sympy,代码行数:44,代码来源:combsimp.py


示例9: eval

    def eval(cls, n, alpha, x):
        # L_{n}^{0}(x)  --->  L_{n}(x)
        if alpha == S.Zero:
            return laguerre(n, x)

        if not n.is_Number:
            # We can evaluate for some special values of x
            if x == S.Zero:
                return binomial(n + alpha, alpha)
            elif x == S.Infinity and n > S.Zero:
                return S.NegativeOne**n * S.Infinity
            elif x == S.NegativeInfinity and n > S.Zero:
                return S.Infinity
        else:
            # n is a given fixed integer, evaluate into polynomial
            if n.is_negative:
                raise ValueError(
                    "The index n must be nonnegative integer (got %r)" % n)
            else:
                return laguerre_poly(n, x, alpha)
开发者ID:ChaliZhg,项目名称:sympy,代码行数:20,代码来源:polynomials.py


示例10: nC

def nC(n, k=None, replacement=False):
    """Return the number of combinations of ``n`` items taken ``k`` at a time.

    Possible values for ``n``::
        integer - set of length ``n``
        sequence - converted to a multiset internally
        multiset - {element: multiplicity}

    If ``k`` is None then the total of all combinations of length 0
    through the number of items represented in ``n`` will be returned.

    If ``replacement`` is True then a given item can appear more than once
    in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa',
    'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when
    ``replacement`` is True but the total number of elements is considered
    since no element can appear more times than the number of elements in
    ``n``.

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import nC
    >>> from sympy.utilities.iterables import multiset_combinations
    >>> nC(3, 2)
    3
    >>> nC('abc', 2)
    3
    >>> nC('aab', 2)
    2

    When ``replacement`` is True, each item can have multiplicity
    equal to the length represented by ``n``:

    >>> nC('aabc', replacement=True)
    35
    >>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)]
    [1, 3, 6, 10, 15]
    >>> sum(_)
    35

    If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k``
    then the total of all combinations of length 0 hrough ``k`` is the
    product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity
    of each item is 1 (i.e., k unique items) then there are 2**k
    combinations. For example, if there are 4 unique items, the total number
    of combinations is 16:

    >>> sum(nC(4, i) for i in range(5))
    16

    References
    ==========

    .. [1] http://en.wikipedia.org/wiki/Combination
    .. [2] http://tinyurl.com/cep849r

    See Also
    ========
    sympy.utilities.iterables.multiset_combinations
    """
    from sympy.functions.combinatorial.factorials import binomial
    from sympy.core.mul import prod

    if isinstance(n, SYMPY_INTS):
        if k is None:
            if not replacement:
                return 2**n
            return sum(nC(n, i, replacement) for i in range(n + 1))
        if k < 0:
            raise ValueError("k cannot be negative")
        if replacement:
            return binomial(n + k - 1, k)
        return binomial(n, k)
    if isinstance(n, _MultisetHistogram):
        N = n[_N]
        if k is None:
            if not replacement:
                return prod(m + 1 for m in n[_M])
            return sum(nC(n, i, replacement) for i in range(N + 1))
        elif replacement:
            return nC(n[_ITEMS], k, replacement)
        # assert k >= 0
        elif k in (1, N - 1):
            return n[_ITEMS]
        elif k in (0, N):
            return 1
        return _AOP_product(tuple(n[_M]))[k]
    else:
        return nC(_multiset_histogram(n), k, replacement)
开发者ID:Zulko,项目名称:sympy,代码行数:89,代码来源:numbers.py


示例11: _eval_rewrite_as_polynomial

 def _eval_rewrite_as_polynomial(self, n, x):
     from sympy import Sum
     k = Dummy("k")
     kern = (-1)**k*binomial(n, k)**2*((1 + x)/2)**(n - k)*((1 - x)/2)**k
     return Sum(kern, (k, 0, n))
开发者ID:ChaliZhg,项目名称:sympy,代码行数:5,代码来源:polynomials.py


示例12: _eval_rewrite_as_binomial

 def _eval_rewrite_as_binomial(self, n):
     return binomial(2*n, n)/(n + 1)
开发者ID:SungSingSong,项目名称:sympy,代码行数:2,代码来源:numbers.py


示例13: combsimp

def combsimp(expr):
    r"""
    Simplify combinatorial expressions.

    This function takes as input an expression containing factorials,
    binomials, Pochhammer symbol and other "combinatorial" functions,
    and tries to minimize the number of those functions and reduce
    the size of their arguments. The result is be given in terms of
    binomials and factorials.

    The algorithm works by rewriting all combinatorial functions as
    expressions involving rising factorials (Pochhammer symbols) and
    applies recurrence relations and other transformations applicable
    to rising factorials, to reduce their arguments, possibly letting
    the resulting rising factorial to cancel. Rising factorials with
    the second argument being an integer are expanded into polynomial
    forms and finally all other rising factorial are rewritten in terms
    more familiar functions. If the initial expression contained any
    combinatorial functions, the result is expressed using binomial
    coefficients and gamma functions. If the initial expression consisted
    of gamma functions alone, the result is expressed in terms of gamma
    functions.

    If the result is expressed using gamma functions, the following three
    additional steps are performed:

    1. Reduce the number of gammas by applying the reflection theorem
       gamma(x)*gamma(1-x) == pi/sin(pi*x).
    2. Reduce the number of gammas by applying the multiplication theorem
       gamma(x)*gamma(x+1/n)*...*gamma(x+(n-1)/n) == C*gamma(n*x).
    3. Reduce the number of prefactors by absorbing them into gammas, where
       possible.

    All transformation rules can be found (or was derived from) here:

    1. http://functions.wolfram.com/GammaBetaErf/Pochhammer/17/01/02/
    2. http://functions.wolfram.com/GammaBetaErf/Pochhammer/27/01/0005/

    Examples
    ========

    >>> from sympy.simplify import combsimp
    >>> from sympy import factorial, binomial
    >>> from sympy.abc import n, k

    >>> combsimp(factorial(n)/factorial(n - 3))
    n*(n - 2)*(n - 1)
    >>> combsimp(binomial(n+1, k+1)/binomial(n, k))
    (n + 1)/(k + 1)

    """

    # as a rule of thumb, if the expression contained gammas initially, it
    # probably makes sense to retain them
    as_gamma = not expr.has(factorial, binomial)


    expr = expr.replace(binomial,
        lambda n, k: _rf((n - k + 1).expand(), k.expand())/_rf(1, k.expand()))
    expr = expr.replace(factorial,
        lambda n: _rf(1, n.expand()))
    expr = expr.rewrite(gamma)
    expr = expr.replace(gamma,
        lambda n: _rf(1, (n - 1).expand()))

    if as_gamma:
        expr = expr.replace(_rf,
            lambda a, b: gamma(a + b)/gamma(a))
    else:
        expr = expr.replace(_rf,
            lambda a, b: binomial(a + b - 1, b)*factorial(b))

    def rule(n, k):
        coeff, rewrite = S.One, False

        cn, _n = n.as_coeff_Add()

        if _n and cn.is_Integer and cn:
            coeff *= _rf(_n + 1, cn)/_rf(_n - k + 1, cn)
            rewrite = True
            n = _n

        # this sort of binomial has already been removed by
        # rising factorials but is left here in case the order
        # of rule application is changed
        if k.is_Add:
            ck, _k = k.as_coeff_Add()
            if _k and ck.is_Integer and ck:
                coeff *= _rf(n - ck - _k + 1, ck)/_rf(_k + 1, ck)
                rewrite = True
                k = _k

        if rewrite:
            return coeff*binomial(n, k)

    expr = expr.replace(binomial, rule)

    def rule_gamma(expr, level=0):
        """ Simplify products of gamma functions further. """

#.........这里部分代码省略.........
开发者ID:LuckyStrikes1090,项目名称:sympy,代码行数:101,代码来源:combsimp.py


示例14: __mul__


#.........这里部分代码省略.........
                    y1.append(j * other)
                return HolonomicFunction(ann_self, self.x, self.x0, y1)

        ann_other = other.annihilator
        list_self = []
        list_other = []
        a = ann_self.order
        b = ann_other.order

        R = ann_self.parent.base
        K = R.get_field()

        for j in ann_self.listofpoly:
            list_self.append(K.new(j.rep))

        for j in ann_other.listofpoly:
            list_other.append(K.new(j.rep))

        # will be used to reduce the degree
        self_red = [-list_self[i] / list_self[a] for i in range(a)]

        other_red = [-list_other[i] / list_other[b] for i in range(b)]

        # coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
        coeff_mul = [[S(0) for i in range(b + 1)] for j in range(a + 1)]
        coeff_mul[0][0] = S(1)

        # making the ansatz
        lin_sys = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]

        homo_sys = [[S(0) for q in range(a * b)]]
        homo_sys = NewMatrix(homo_sys).transpose()

        sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)

        # until a non trivial solution is found
        while sol[0].is_zero:

            # updating the coefficents Dx^i(f).Dx^j(g) for next degree
            for i in range(a - 1, -1, -1):
                for j in range(b - 1, -1, -1):
                    coeff_mul[i][j + 1] += coeff_mul[i][j]
                    coeff_mul[i + 1][j] += coeff_mul[i][j]
                    if isinstance(coeff_mul[i][j], K.dtype):
                        coeff_mul[i][j] = DMFdiff(coeff_mul[i][j])
                    else:
                        coeff_mul[i][j] = coeff_mul[i][j].diff()

            # reduce the terms to lower power using annihilators of f, g
            for i in range(a + 1):
                if not coeff_mul[i][b] == S(0):
                    for j in range(b):
                        coeff_mul[i][j] += other_red[j] * \
                            coeff_mul[i][b]
                    coeff_mul[i][b] = S(0)

            # not d2 + 1, as that is already covered in previous loop
            for j in range(b):
                if not coeff_mul[a][j] == 0:
                    for i in range(a):
                        coeff_mul[i][j] += self_red[i] * \
                            coeff_mul[a][j]
                    coeff_mul[a][j] = S(0)

            lin_sys.append([coeff_mul[i][j] for i in range(a)
                            for j in range(b)])

            sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)


        sol_ann = _normalize(sol[0][0:], self.annihilator.parent, negative=False)

        if self._have_init_cond and other._have_init_cond:
            if self.x0 == other.x0:

                # try to find more inital conditions
                y0_self = _extend_y0(self, sol_ann.order)
                y0_other = _extend_y0(other, sol_ann.order)
                # h(x0) = f(x0) * g(x0)
                y0 = [y0_self[0] * y0_other[0]]

                # coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
                for i in range(1, min(len(y0_self), len(y0_other))):
                    coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
                    for j in range(i + 1):
                        for k in range(i + 1):
                            if j + k == i:
                                coeff[j][k] = binomial(i, j)

                    sol = 0
                    for j in range(i + 1):
                        for k in range(i + 1):
                            sol += coeff[j][k]* y0_self[j] * y0_other[k]

                    y0.append(sol)
                return HolonomicFunction(sol_ann, self.x, self.x0, y0)
            else:
                raise NotImplementedError

        return HolonomicFunction(sol_ann, self.x)
开发者ID:Carreau,项目名称:sympy,代码行数:101,代码来源:holonomic.py


示例15: fit

 def fit(d, r, p):
     return -np.log(np.float(c.binomial(d, r)) * (p ** r) * (1 - p) ** (d - r))
开发者ID:lucasant10,项目名称:Twitter,代码行数:2,代码来源:burst.py


示例16: test_sympy__functions__combinatorial__factorials__binomial

def test_sympy__functions__combinatorial__factorials__binomial():
    from sympy.functions.combinatorial.factorials import binomial
    assert _test_args(binomial(2, x))
开发者ID:101man,项目名称:sympy,代码行数:3,代码来源:test_args.py


示例17: rational_algorithm


#.........这里部分代码省略.........
    order : int

    Examples
    ========

    >>> from sympy import log, atan, I
    >>> from sympy.series.formal import rational_algorithm as ra
    >>> from sympy.abc import x, k

    >>> ra(1 / (1 - x), x, k)
    (1, 0, 0)
    >>> ra(log(1 + x), x, k)
    (-(-1)**(-k)/k, 0, 1)

    >>> ra(atan(x), x, k, full=True)
    ((-I*(-I)**(-k)/2 + I*I**(-k)/2)/k, 0, 1)

    Notes
    =====

    By setting ``full=True``, range of admissible functions to be solved using
    ``rational_algorithm`` can be increased. This option should be used
    carefully as it can signifcantly slow down the computation as ``doit`` is
    performed on the :class:`RootSum` object returned by the ``apart`` function.
    Use ``full=False`` whenever possible.

    See Also
    ========

    sympy.polys.partfrac.apart

    References
    ==========

    .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf
    .. [2] Power Series in Computer Algebra - Wolfram Koepf
    """
    from sympy.polys import RootSum, apart
    from sympy.integrals import integrate

    diff = f
    ds = []  # list of diff

    for i in range(order + 1):
        if i:
            diff = diff.diff(x)

        if diff.is_rational_function(x):
            coeff, sep = S.Zero, S.Zero

            terms = apart(diff, x, full=full)
            if terms.has(RootSum):
                terms = terms.doit()

            for t in Add.make_args(terms):
                num, den = t.as_numer_denom()
                if not den.has(x):
                    sep += t
                else:
                    if isinstance(den, Mul):
                        # m*(n*x - a)**j -> (n*x - a)**j
                        ind = den.as_independent(x)
                        den = ind[1]
                        num /= ind[0]

                    # (n*x - a)**j -> (x - b)
                    den, j = den.as_base_exp()
                    a, xterm = den.as_coeff_add(x)

                    # term -> m/x**n
                    if not a:
                        sep += t
                        continue

                    xc = xterm[0].coeff(x)
                    a /= -xc
                    num /= xc**j

                    ak = ((-1)**j * num *
                          binomial(j + k - 1, k).rewrite(factorial) /
                          a**(j + k))
                    coeff += ak

            # Hacky, better way?
            if coeff is S.Zero:
                return None
            if (coeff.has(x) or coeff.has(zoo) or coeff.has(oo) or
                    coeff.has(nan)):
                return None

            for j in range(i):
                coeff = (coeff / (k + j + 1))
                sep = integrate(sep, x)
                sep += (ds.pop() - sep).limit(x, 0)  # constant of integration
            return (coeff.subs(k, k - i), sep, i)

        else:
            ds.append(diff)

    return None
开发者ID:chris-turner137,项目名称:sympy,代码行数:101,代码来源:formal.py


示例18: __mul__

    def __mul__(self, other):

        ann_self = self.annihilator
        ann_other = other.annihilator
        list_self = ann_self.listofpoly
        list_other = ann_other.listofpoly
        a = ann_self.order
        b = ann_other.order

        for i, j in enumerate(list_self):
            if isinstance(j, ann_self.parent.base.dtype):
                list_self[i] = ann_self.parent.base.to_sympy(j)

        for i, j in enumerate(list_other):
            if isinstance(j, ann_other.parent.base.dtype):
                list_other[i] = ann_other.parent.base.to_sympy(j)
        # will be used to reduce the degree
        self_red = [-list_self[i] / list_self[a]
                    for i in range(a)]

        other_red = [-list_other[i] / list_other[b]
                     for i in range(b)]
        # coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
        coeff_mul = [[S(0) for i in range(b + 1)]
                     for j in range(a + 1)]
        coeff_mul[0][0] = S(1)
        # making the ansatz
        lin_sys = [[coeff_mul[i][j]
                    for i in range(a) for j in range(b)]]

        homo_sys = [[0 for q in range(a * b)]]
        homo_sys = Matrix(homo_sys).transpose()

        sol = (Matrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
        # until a non trivial solution is found
        while sol[0].is_zero:
            # updating the coefficents Dx^i(f).Dx^j(g) for next degree
            for i in range(a - 1, -1, -1):
                for j in range(b - 1, -1, -1):
                    coeff_mul[i][j + 1] += coeff_mul[i][j]
                    coeff_mul[i + 1][j] += coeff_mul[i][j]
                    coeff_mul[i][j] = coeff_mul[i][j].diff()
            # reduce the terms to lower power using annihilators of f, g
            for i in range(a + 1):
                if not coeff_mul[i][b] == S(0):
                    for j in range(b):
                        coeff_mul[i][j] += other_red[j] * \
                            coeff_mul[i][b]
                    coeff_mul[i][b] = S(0)

            # not d2 + 1, as that is already covered in previous loop
            for j in range(b):
                if not coeff_mul[a][j] == 0:
                    for i in range(a):
                        coeff_mul[i][j] += self_red[i] * \
                            coeff_mul[a][j]
                    coeff_mul[a][j] = S(0)

            lin_sys.append([coeff_mul[i][j] for i in range(a)
                            for j in range(b)])

            sol = (Matrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)

        sol = sol[0] / sol[1]

        sol_ann = DifferentialOperator(_normalize(
            sol[0:], self.x, negative=False), ann_self.parent)

        if self._have_init_cond and other._have_init_cond:
            if self.x0 == other.x0:

                # try to find more inital conditions
                y0_self = _extend_y0(self, sol_ann.order)
                y0_other = _extend_y0(other, sol_ann.order)
                # h(x0) = f(x0) * g(x0)
                y0 = [y0_self[0] * y0_other[0]]

                # coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
                for i in range(1, min(len(y0_self), len(y0_other))):
                    coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
                    for j in range(i + 1):
                        for k in range(i + 1):
                            if j + k == i:
                                coeff[j][k] = binomial(i, j)

                    sol = 0
                    for j in range(i + 1):
                        for k in range(i + 1):
                            sol += coeff[j][k]* y0_self[j] * y0_other[k]

                    y0.append(sol)
                return HolonomicFunction(sol_ann, self.x, self.x0, y0)
            else:
                raise NotImplementedError

        return HolonomicFunction(sol_ann, self.x)
开发者ID:Asnelchristian,项目名称:sympy,代码行数:96,代码来源:holonomic.py



注:本文中的sympy.functions.combinatorial.factorials.binomial函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python factorials.factorial函数代码示例发布时间:2022-05-27
下一篇:
Python functions.transpose函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap