• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python polytools.parallel_poly_from_expr函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sympy.polys.polytools.parallel_poly_from_expr函数的典型用法代码示例。如果您正苦于以下问题:Python parallel_poly_from_expr函数的具体用法?Python parallel_poly_from_expr怎么用?Python parallel_poly_from_expr使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了parallel_poly_from_expr函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_solve_biquadratic

def test_solve_biquadratic():
    x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')

    f_1 = (x - 1)**2 + (y - 1)**2 - r**2
    f_2 = (x - 2)**2 + (y - 2)**2 - r**2
    s = sqrt(2*r**2 - 1)
    a = (3 - s)/2
    b = (3 + s)/2
    assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]

    f_1 = (x - 1)**2 + (y - 2)**2 - r**2
    f_2 = (x - 1)**2 + (y - 1)**2 - r**2

    assert solve_poly_system([f_1, f_2], x, y) == \
        [(1 - sqrt(((2*r - 1)*(2*r + 1)))/2, S(3)/2),
         (1 + sqrt(((2*r - 1)*(2*r + 1)))/2, S(3)/2)]

    query = lambda expr: expr.is_Pow and expr.exp is S.Half

    f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
    f_2 = (x - x1)**2 + (y - 1)**2 - r**2

    result = solve_poly_system([f_1, f_2], x, y)

    assert len(result) == 2 and all(len(r) == 2 for r in result)
    assert all(r.count(query) == 1 for r in flatten(result))

    f_1 = (x - x0)**2 + (y - y0)**2 - r**2
    f_2 = (x - x1)**2 + (y - y1)**2 - r**2

    result = solve_poly_system([f_1, f_2], x, y)

    assert len(result) == 2 and all(len(r) == 2 for r in result)
    assert all(len(r.find(query)) == 1 for r in flatten(result))

    s1 = (x*y - y, x**2 - x)
    assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
    s2 = (x*y - x, y**2 - y)
    assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
    gens = (x, y)
    for seq in (s1, s2):
        (f, g), opt = parallel_poly_from_expr(seq, *gens)
        raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
    seq = (x**2 + y**2 - 2, y**2 - 1)
    (f, g), opt = parallel_poly_from_expr(seq, *gens)
    assert solve_biquadratic(f, g, opt) == [
        (-1, -1), (-1, 1), (1, -1), (1, 1)]
    ans = [(0, -1), (0, 1)]
    seq = (x**2 + y**2 - 1, y**2 - 1)
    (f, g), opt = parallel_poly_from_expr(seq, *gens)
    assert solve_biquadratic(f, g, opt) == ans
    seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
    (f, g), opt = parallel_poly_from_expr(seq, *gens)
    assert solve_biquadratic(f, g, opt) == ans
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:54,代码来源:test_polysys.py


示例2: solve_poly_system

def solve_poly_system(seq, *gens, **args):
    """
    Solve a system of polynomial equations.

    Examples
    ========

    >>> from sympy import solve_poly_system
    >>> from sympy.abc import x, y

    >>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
    [(0, 0), (2, -sqrt(2)), (2, sqrt(2))]

    """
    try:
        polys, opt = parallel_poly_from_expr(seq, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('solve_poly_system', len(seq), exc)

    if len(polys) == len(opt.gens) == 2:
        f, g = polys

        a, b = f.degree_list()
        c, d = g.degree_list()

        if a <= 2 and b <= 2 and c <= 2 and d <= 2:
            try:
                return solve_biquadratic(f, g, opt)
            except SolveFailed:
                pass

    return solve_generic(polys, opt)
开发者ID:alhirzel,项目名称:sympy,代码行数:32,代码来源:polysys.py


示例3: apart

def apart(f, x=None, full=False, **options):
    """
    Compute partial fraction decomposition of a rational function.

    Given a rational function ``f`` compute partial fraction decomposition
    of ``f``. Two algorithms are available: one is based on undetermined
    coefficients method and the other is Bronstein's full partial fraction
    decomposition algorithm.

    Examples
    ========

    >>> from sympy.polys.partfrac import apart
    >>> from sympy.abc import x, y

    >>> apart(y/(x + 2)/(x + 1), x)
    -y/(x + 2) + y/(x + 1)

    """
    allowed_flags(options, [])

    f = sympify(f)

    if f.is_Atom:
        return f
    else:
        P, Q = f.as_numer_denom()

    options = set_defaults(options, extension=True)
    (P, Q), opt = parallel_poly_from_expr((P, Q), x, **options)

    if P.is_multivariate:
        raise NotImplementedError(
            "multivariate partial fraction decomposition")

    common, P, Q = P.cancel(Q)

    poly, P = P.div(Q, auto=True)
    P, Q = P.rat_clear_denoms(Q)

    if Q.degree() <= 1:
        partial = P/Q
    else:
        if not full:
            partial = apart_undetermined_coeffs(P, Q)
        else:
            partial = apart_full_decomposition(P, Q)

    terms = S.Zero

    for term in Add.make_args(partial):
        if term.has(RootSum):
            terms += term
        else:
            terms += factor(term)

    return common*(poly.as_expr() + terms)
开发者ID:FireJade,项目名称:sympy,代码行数:57,代码来源:partfrac.py


示例4: symmetrize

def symmetrize(F, *gens, **args):
    """
    Rewrite a polynomial in terms of elementary symmetric polynomials.

    Examples
    ========

    >>> from sympy.polys.polyfuncs import symmetrize
    >>> from sympy.abc import x, y

    >>> symmetrize(x**2 + y**2)
    (-2*x*y + (x + y)**2, 0)

    >>> symmetrize(x**2 + y**2, formal=True)
    (s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])

    >>> symmetrize(x**2 - y**2)
    (-2*x*y + (x + y)**2, -2*y**2)

    >>> symmetrize(x**2 - y**2, formal=True)
    (s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])

    """
    allowed_flags(args, ["formal", "symbols"])

    iterable = True

    if not hasattr(F, "__iter__"):
        iterable = False
        F = [F]

    try:
        F, opt = parallel_poly_from_expr(F, *gens, **args)
    except PolificationFailed, exc:
        result = []

        for expr in exc.exprs:
            if expr.is_Number:
                result.append((expr, S.Zero))
            else:
                raise ComputationFailed("symmetrize", len(F), exc)
        else:
            if not iterable:
                result, = result

            if not exc.opt.formal:
                return result
            else:
                if iterable:
                    return result, []
                else:
                    return result + ([],)
开发者ID:jenshnielsen,项目名称:sympy,代码行数:52,代码来源:polyfuncs.py


示例5: solve_poly_system

def solve_poly_system(seq, *gens, **args):
    """
    Solve a system of polynomial equations.

    Example
    =======

    >>> from sympy import solve_poly_system
    >>> from sympy.abc import x, y

    >>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
    [(0, 0), (2, -2**(1/2)), (2, 2**(1/2))]

    """
    try:
        polys, opt = parallel_poly_from_expr(seq, *gens, **args)
    except PolificationFailed, exc:
        raise ComputationFailed('solve_poly_system', len(seq), exc)
开发者ID:Jerryy,项目名称:sympy,代码行数:18,代码来源:polysys.py


示例6: apart_list


#.........这里部分代码省略.........
    A first example:

    >>> from sympy.polys.partfrac import apart_list, assemble_partfrac_list
    >>> from sympy.abc import x, t

    >>> f = (2*x**3 - 2*x) / (x**2 - 2*x + 1)
    >>> pfd = apart_list(f)
    >>> pfd
    (1,
    Poly(2*x + 4, x, domain='ZZ'),
    [(Poly(_w - 1, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1)])

    >>> assemble_partfrac_list(pfd)
    2*x + 4 + 4/(x - 1)

    Second example:

    >>> f = (-2*x - 2*x**2) / (3*x**2 - 6*x)
    >>> pfd = apart_list(f)
    >>> pfd
    (-1,
    Poly(2/3, x, domain='QQ'),
    [(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 2), Lambda(_a, -_a + x), 1)])

    >>> assemble_partfrac_list(pfd)
    -2/3 - 2/(x - 2)

    Another example, showing symbolic parameters:

    >>> pfd = apart_list(t/(x**2 + x + t), x)
    >>> pfd
    (1,
    Poly(0, x, domain='ZZ[t]'),
    [(Poly(_w**2 + _w + t, _w, domain='ZZ[t]'),
    Lambda(_a, -2*_a*t/(4*t - 1) - t/(4*t - 1)),
    Lambda(_a, -_a + x),
    1)])

    >>> assemble_partfrac_list(pfd)
    RootSum(_w**2 + _w + t, Lambda(_a, (-2*_a*t/(4*t - 1) - t/(4*t - 1))/(-_a + x)))

    This example is taken from Bronstein's original paper:

    >>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2)
    >>> pfd = apart_list(f)
    >>> pfd
    (1,
    Poly(0, x, domain='ZZ'),
    [(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1),
    (Poly(_w**2 - 1, _w, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2),
    (Poly(_w + 1, _w, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1)])

    >>> assemble_partfrac_list(pfd)
    -4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2)

    See also
    ========

    apart, assemble_partfrac_list

    References
    ==========

    1. [Bronstein93]_

    """
    allowed_flags(options, [])

    f = sympify(f)

    if f.is_Atom:
        return f
    else:
        P, Q = f.as_numer_denom()

    options = set_defaults(options, extension=True)
    (P, Q), opt = parallel_poly_from_expr((P, Q), x, **options)

    if P.is_multivariate:
        raise NotImplementedError(
            "multivariate partial fraction decomposition")

    common, P, Q = P.cancel(Q)

    poly, P = P.div(Q, auto=True)
    P, Q = P.rat_clear_denoms(Q)

    polypart = poly

    if dummies is None:
        def dummies(name):
            d = Dummy(name)
            while True:
                yield d

        dummies = dummies("w")

    rationalpart = apart_list_full_decomposition(P, Q, dummies)

    return (common, polypart, rationalpart)
开发者ID:vidyar,项目名称:sympy,代码行数:101,代码来源:partfrac.py


示例7: apart

def apart(f, x=None, full=False, **options):
    """
    Compute partial fraction decomposition of a rational function.

    Given a rational function ``f`` compute partial fraction decomposition
    of ``f``. Two algorithms are available: one is based on undetermined
    coefficients method and the other is Bronstein's full partial fraction
    decomposition algorithm.

    Examples
    ========

    >>> from sympy.polys.partfrac import apart
    >>> from sympy.abc import x, y

    By default, using the undetermined coefficients method:

    >>> apart(y/(x + 2)/(x + 1), x)
    -y/(x + 2) + y/(x + 1)

    You can choose Bronstein's algorithm by setting ``full=True``:

    >>> apart(y/(x**2 + x + 1), x)
    y/(x**2 + x + 1)
    >>> apart(y/(x**2 + x + 1), x, full=True)
    RootSum(_w**2 + _w + 1, Lambda(_a, (-2*_a*y/3 - y/3)/(-_a + x)))

    See Also
    ========

    apart_list, assemble_partfrac_list
    """
    allowed_flags(options, [])

    f = sympify(f)

    if f.is_Atom:
        return f
    else:
        P, Q = f.as_numer_denom()

    _options = options.copy()
    options = set_defaults(options, extension=True)
    try:
        (P, Q), opt = parallel_poly_from_expr((P, Q), x, **options)
    except PolynomialError as msg:
        if f.is_commutative:
            raise PolynomialError(msg)
        # non-commutative
        if f.is_Mul:
            c, nc = f.args_cnc(split_1=False)
            nc = Mul(*[apart(i, x=x, full=full, **_options) for i in nc])
            if c:
                c = apart(Mul._from_args(c), x=x, full=full, **_options)
                return c*nc
            else:
                return nc
        elif f.is_Add:
            c = []
            nc = []
            for i in f.args:
                if i.is_commutative:
                    c.append(i)
                else:
                    try:
                        nc.append(apart(i, x=x, full=full, **_options))
                    except NotImplementedError:
                        nc.append(i)
            return apart(Add(*c), x=x, full=full, **_options) + Add(*nc)
        else:
            reps = []
            pot = preorder_traversal(f)
            pot.next()
            for e in pot:
                try:
                    reps.append((e, apart(e, x=x, full=full, **_options)))
                    pot.skip()  # this was handled successfully
                except NotImplementedError:
                    pass
            return f.xreplace(dict(reps))

    if P.is_multivariate:
        fc = f.cancel()
        if fc != f:
            return apart(fc, x=x, full=full, **_options)

        raise NotImplementedError(
            "multivariate partial fraction decomposition")

    common, P, Q = P.cancel(Q)

    poly, P = P.div(Q, auto=True)
    P, Q = P.rat_clear_denoms(Q)

    if Q.degree() <= 1:
        partial = P/Q
    else:
        if not full:
            partial = apart_undetermined_coeffs(P, Q)
        else:
#.........这里部分代码省略.........
开发者ID:vidyar,项目名称:sympy,代码行数:101,代码来源:partfrac.py


示例8: apart

def apart(f, x=None, full=False, **options):
    """
    Compute partial fraction decomposition of a rational function.

    Given a rational function ``f``, computes the partial fraction
    decomposition of ``f``. Two algorithms are available: One is based on the
    undertermined coefficients method, the other is Bronstein's full partial
    fraction decomposition algorithm.

    The undetermined coefficients method (selected by ``full=False``) uses
    polynomial factorization (and therefore accepts the same options as
    factor) for the denominator. Per default it works over the rational
    numbers, therefore decomposition of denominators with non-rational roots
    (e.g. irrational, complex roots) is not supported by default (see options
    of factor).

    Bronstein's algorithm can be selected by using ``full=True`` and allows a
    decomposition of denominators with non-rational roots. A human-readable
    result can be obtained via ``doit()`` (see examples below).

    Examples
    ========

    >>> from sympy.polys.partfrac import apart
    >>> from sympy.abc import x, y

    By default, using the undetermined coefficients method:

    >>> apart(y/(x + 2)/(x + 1), x)
    -y/(x + 2) + y/(x + 1)

    The undetermined coefficients method does not provide a result when the
    denominators roots are not rational:

    >>> apart(y/(x**2 + x + 1), x)
    y/(x**2 + x + 1)

    You can choose Bronstein's algorithm by setting ``full=True``:

    >>> apart(y/(x**2 + x + 1), x, full=True)
    RootSum(_w**2 + _w + 1, Lambda(_a, (-2*_a*y/3 - y/3)/(-_a + x)))

    Calling ``doit()`` yields a human-readable result:

    >>> apart(y/(x**2 + x + 1), x, full=True).doit()
    (-y/3 - 2*y*(-1/2 - sqrt(3)*I/2)/3)/(x + 1/2 + sqrt(3)*I/2) + (-y/3 -
        2*y*(-1/2 + sqrt(3)*I/2)/3)/(x + 1/2 - sqrt(3)*I/2)


    See Also
    ========

    apart_list, assemble_partfrac_list
    """
    allowed_flags(options, [])

    f = sympify(f)

    if f.is_Atom:
        return f
    else:
        P, Q = f.as_numer_denom()

    _options = options.copy()
    options = set_defaults(options, extension=True)
    try:
        (P, Q), opt = parallel_poly_from_expr((P, Q), x, **options)
    except PolynomialError as msg:
        if f.is_commutative:
            raise PolynomialError(msg)
        # non-commutative
        if f.is_Mul:
            c, nc = f.args_cnc(split_1=False)
            nc = f.func(*nc)
            if c:
                c = apart(f.func._from_args(c), x=x, full=full, **_options)
                return c*nc
            else:
                return nc
        elif f.is_Add:
            c = []
            nc = []
            for i in f.args:
                if i.is_commutative:
                    c.append(i)
                else:
                    try:
                        nc.append(apart(i, x=x, full=full, **_options))
                    except NotImplementedError:
                        nc.append(i)
            return apart(f.func(*c), x=x, full=full, **_options) + f.func(*nc)
        else:
            reps = []
            pot = preorder_traversal(f)
            next(pot)
            for e in pot:
                try:
                    reps.append((e, apart(e, x=x, full=full, **_options)))
                    pot.skip()  # this was handled successfully
                except NotImplementedError:
#.........这里部分代码省略.........
开发者ID:KonstantinTogoi,项目名称:sympy,代码行数:101,代码来源:partfrac.py


示例9: symmetrize

def symmetrize(F, *gens, **args):
    """
    Rewrite a polynomial in terms of elementary symmetric polynomials.

    A symmetric polynomial is a multivariate polynomial that remains invariant
    under any variable permutation, i.e., if ``f = f(x_1, x_2, ..., x_n)``,
    then ``f = f(x_{i_1}, x_{i_2}, ..., x_{i_n})``, where
    ``(i_1, i_2, ..., i_n)`` is a permutation of ``(1, 2, ..., n)`` (an
    element of the group ``S_n``).

    Returns a tuple of symmetric polynomials ``(f1, f2, ..., fn)`` such that
    ``f = f1 + f2 + ... + fn``.

    Examples
    ========

    >>> from sympy.polys.polyfuncs import symmetrize
    >>> from sympy.abc import x, y

    >>> symmetrize(x**2 + y**2)
    (-2*x*y + (x + y)**2, 0)

    >>> symmetrize(x**2 + y**2, formal=True)
    (s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])

    >>> symmetrize(x**2 - y**2)
    (-2*x*y + (x + y)**2, -2*y**2)

    >>> symmetrize(x**2 - y**2, formal=True)
    (s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])

    """
    allowed_flags(args, ['formal', 'symbols'])

    iterable = True

    if not hasattr(F, '__iter__'):
        iterable = False
        F = [F]

    try:
        F, opt = parallel_poly_from_expr(F, *gens, **args)
    except PolificationFailed as exc:
        result = []

        for expr in exc.exprs:
            if expr.is_Number:
                result.append((expr, S.Zero))
            else:
                raise ComputationFailed('symmetrize', len(F), exc)
        else:
            if not iterable:
                result, = result

            if not exc.opt.formal:
                return result
            else:
                if iterable:
                    return result, []
                else:
                    return result + ([],)

    polys, symbols = [], opt.symbols
    gens, dom = opt.gens, opt.domain

    for i in xrange(0, len(gens)):
        poly = symmetric_poly(i + 1, gens, polys=True)
        polys.append((next(symbols), poly.set_domain(dom)))

    indices = list(range(0, len(gens) - 1))
    weights = list(range(len(gens), 0, -1))

    result = []

    for f in F:
        symmetric = []

        if not f.is_homogeneous:
            symmetric.append(f.TC())
            f -= f.TC()

        while f:
            _height, _monom, _coeff = -1, None, None

            for i, (monom, coeff) in enumerate(f.terms()):
                if all(monom[i] >= monom[i + 1] for i in indices):
                    height = max([ n*m for n, m in zip(weights, monom) ])

                    if height > _height:
                        _height, _monom, _coeff = height, monom, coeff

            if _height != -1:
                monom, coeff = _monom, _coeff
            else:
                break

            exponents = []

            for m1, m2 in zip(monom, monom[1:] + (0,)):
                exponents.append(m1 - m2)
#.........这里部分代码省略.........
开发者ID:AALEKH,项目名称:sympy,代码行数:101,代码来源:polyfuncs.py


示例10: _minpoly_op_algebraic_element

def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None):
    """
    return the minimal polynomial for ``op(ex1, ex2)``

    Parameters
    ==========

    op : operation ``Add`` or ``Mul``
    ex1, ex2 : expressions for the algebraic elements
    x : indeterminate of the polynomials
    dom: ground domain
    mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None

    Examples
    ========

    >>> from sympy import sqrt, Add, Mul, QQ
    >>> from sympy.polys.numberfields import _minpoly_op_algebraic_element
    >>> from sympy.abc import x, y
    >>> p1 = sqrt(sqrt(2) + 1)
    >>> p2 = sqrt(sqrt(2) - 1)
    >>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ)
    x - 1
    >>> q1 = sqrt(y)
    >>> q2 = 1 / y
    >>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y))
    x**2*y**2 - 2*x*y - y**3 + 1

    References
    ==========

    [1] http://en.wikipedia.org/wiki/Resultant
    [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
    "Degrees of sums in a separable field extension".
    """
    from sympy import gcd
    y = Dummy(str(x))
    if mp1 is None:
        mp1 = _minpoly_compose(ex1, x, dom)
    if mp2 is None:
        mp2 = _minpoly_compose(ex2, y, dom)
    else:
        mp2 = mp2.subs({x: y})

    if op is Add:
        # mp1a = mp1.subs({x: x - y})
        (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
        r = p1.compose(p2)
        mp1a = r.as_expr()
    elif op is Mul:
        mp1a = _muly(mp1, x, y)
    else:
        raise NotImplementedError('option not available')

    r = resultant(mp1a, mp2, gens=[y, x])

    deg1 = degree(mp1, x)
    deg2 = degree(mp2, y)
    if op is Add and gcd(deg1, deg2) == 1:
        # `r` is irreducible, see [2]
        return r
    if op is Mul and deg1 == 1 or deg2 == 1:
        # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
        # r = mp2(x - a), so that `r` is irreducible
        return r

    r = Poly(r, x, domain=dom)
    _, factors = r.factor_list()
    res = _choose_factor(factors, x, op(ex1, ex2), dom)
    return res.as_expr()
开发者ID:thilinarmtb,项目名称:sympy,代码行数:70,代码来源:numberfields.py


示例11: _minpoly_op_algebraic_number

def _minpoly_op_algebraic_number(ex1, ex2, x, mp1=None, mp2=None, op=Add):
    """
    return the minimal polinomial for ``op(ex1, ex2)``

    Parameters
    ==========

    ex1, ex2 : expressions for the algebraic numbers
    x : indeterminate of the polynomials
    mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None
    op : operation ``Add`` or ``Mul``

    Examples
    ========

    >>> from sympy import sqrt, Mul
    >>> from sympy.polys.numberfields import _minpoly_op_algebraic_number
    >>> from sympy.abc import x
    >>> p1 = sqrt(sqrt(2) + 1)
    >>> p2 = sqrt(sqrt(2) - 1)
    >>> _minpoly_op_algebraic_number(p1, p2, x, op=Mul)
    x - 1

    References
    ==========

    [1] http://en.wikipedia.org/wiki/Resultant
    [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
    "Degrees of sums in a separable field extension".
    """
    from sympy import gcd
    y = Dummy(str(x))
    if mp1 is None:
        mp1 = _minpoly1(ex1, x)
    if mp2 is None:
        mp2 = _minpoly1(ex2, y)
    else:
        mp2 = mp2.subs({x:y})

    if op is Add:
        # mp1a = mp1.subs({x:x - y})
        (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
        r = p1.compose(p2)
        mp1a = r.as_expr()
    elif op is Mul:
        mp1a = _muly(mp1, x, y)
    else:
        raise NotImplementedError('option not available')
    r = resultant(mp1a, mp2, gens=[y, x])

    deg1 = degree(mp1, x)
    deg2 = degree(mp2, y)
    if op is Add and gcd(deg1, deg2) == 1:
        # `r` is irreducible, see [2]
        return r
    if op is Mul and deg1 == 1 or deg2 == 1:
        # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
        # r = mp2(x - a), so that `r` is irreducible
        return r
    _, factors = factor_list(r)
    if op in [Add, Mul]:
        ex = op(ex1, ex2)
    res = _choose_factor(factors, x, ex)
    return res
开发者ID:abhishekkumawat23,项目名称:sympy,代码行数:64,代码来源:numberfields.py



注:本文中的sympy.polys.polytools.parallel_poly_from_expr函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python polytools.poly函数代码示例发布时间:2022-05-27
下一篇:
Python polytools.groebner函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap