本文整理汇总了C#中Granados.BigInteger类的典型用法代码示例。如果您正苦于以下问题:C# BigInteger类的具体用法?C# BigInteger怎么用?C# BigInteger使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
BigInteger类属于Granados命名空间,在下文中一共展示了BigInteger类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。
示例1: BarrettReduction
//***********************************************************************
// Fast calculation of modular reduction using Barrett's reduction.
// Requires x < b^(2k), where b is the base. In this case, base is
// 2^32 (uint).
//
// Reference [4]
//***********************************************************************
private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant) {
int k = n.dataLength,
kPlusOne = k + 1,
kMinusOne = k - 1;
BigInteger q1 = new BigInteger();
// q1 = x / b^(k-1)
for (int i = kMinusOne, j = 0; i < x.dataLength; i++, j++)
q1.data[j] = x.data[i];
q1.dataLength = x.dataLength - kMinusOne;
if (q1.dataLength <= 0)
q1.dataLength = 1;
BigInteger q2 = q1 * constant;
BigInteger q3 = new BigInteger();
// q3 = q2 / b^(k+1)
for (int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++)
q3.data[j] = q2.data[i];
q3.dataLength = q2.dataLength - kPlusOne;
if (q3.dataLength <= 0)
q3.dataLength = 1;
// r1 = x mod b^(k+1)
// i.e. keep the lowest (k+1) words
BigInteger r1 = new BigInteger();
int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength;
for (int i = 0; i < lengthToCopy; i++)
r1.data[i] = x.data[i];
r1.dataLength = lengthToCopy;
// r2 = (q3 * n) mod b^(k+1)
// partial multiplication of q3 and n
BigInteger r2 = new BigInteger();
for (int i = 0; i < q3.dataLength; i++) {
if (q3.data[i] == 0)
continue;
ulong mcarry = 0;
int t = i;
for (int j = 0; j < n.dataLength && t < kPlusOne; j++, t++) {
// t = i + j
ulong val = ((ulong)q3.data[i] * (ulong)n.data[j]) +
(ulong)r2.data[t] + mcarry;
r2.data[t] = (uint)(val & 0xFFFFFFFF);
mcarry = (val >> 32);
}
if (t < kPlusOne)
r2.data[t] = (uint)mcarry;
}
r2.dataLength = kPlusOne;
while (r2.dataLength > 1 && r2.data[r2.dataLength - 1] == 0)
r2.dataLength--;
r1 -= r2;
if ((r1.data[maxLength - 1] & 0x80000000) != 0) { // negative
BigInteger val = new BigInteger();
val.data[kPlusOne] = 0x00000001;
val.dataLength = kPlusOne + 1;
r1 += val;
}
while (r1 >= n)
r1 -= n;
return r1;
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:82,代码来源:BigInteger.cs
示例2: BigInteger
//***********************************************************************
// Overloading of unary << operators
//***********************************************************************
public static BigInteger operator <<(BigInteger bi1, int shiftVal) {
BigInteger result = new BigInteger(bi1);
result.dataLength = shiftLeft(result.data, shiftVal);
return result;
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:10,代码来源:BigInteger.cs
示例3: SqrtTest
//***********************************************************************
// Tests the correct implementation of sqrt() method.
//***********************************************************************
public static void SqrtTest(int rounds) {
Random rand = new Random();
for (int count = 0; count < rounds; count++) {
// generate data of random length
int t1 = 0;
while (t1 == 0)
t1 = (int)(rand.NextDouble() * 1024);
Console.Write("Round = " + count);
BigInteger a = new BigInteger();
a.genRandomBits(t1, rand);
BigInteger b = a.sqrt();
BigInteger c = (b + 1) * (b + 1);
// check that b is the largest integer such that b*b <= a
if (c <= a) {
Console.WriteLine("\nError at round " + count);
Console.WriteLine(a + "\n");
return;
}
Console.WriteLine(" <PASSED>.");
}
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:29,代码来源:BigInteger.cs
示例4: Jacobi
//***********************************************************************
// Computes the Jacobi Symbol for a and b.
// Algorithm adapted from [3] and [4] with some optimizations
//***********************************************************************
public static int Jacobi(BigInteger a, BigInteger b) {
// Jacobi defined only for odd integers
if ((b.data[0] & 0x1) == 0)
throw (new ArgumentException("Jacobi defined only for odd integers."));
if (a >= b)
a %= b;
if (a.dataLength == 1 && a.data[0] == 0)
return 0; // a == 0
if (a.dataLength == 1 && a.data[0] == 1)
return 1; // a == 1
if (a < 0) {
if ((((b - 1).data[0]) & 0x2) == 0) //if( (((b-1) >> 1).data[0] & 0x1) == 0)
return Jacobi(-a, b);
else
return -Jacobi(-a, b);
}
int e = 0;
for (int index = 0; index < a.dataLength; index++) {
uint mask = 0x01;
for (int i = 0; i < 32; i++) {
if ((a.data[index] & mask) != 0) {
index = a.dataLength; // to break the outer loop
break;
}
mask <<= 1;
e++;
}
}
BigInteger a1 = a >> e;
int s = 1;
if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))
s = -1;
if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)
s = -s;
if (a1.dataLength == 1 && a1.data[0] == 1)
return s;
else
return (s * Jacobi(b % a1, a1));
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:52,代码来源:BigInteger.cs
示例5: genPseudoPrime
//***********************************************************************
// Generates a positive BigInteger that is probably prime.
//***********************************************************************
public static BigInteger genPseudoPrime(int bits, int confidence, Random rand) {
BigInteger result = new BigInteger();
bool done = false;
while (!done) {
result.genRandomBits(bits, rand);
result.data[0] |= 0x01; // make it odd
// prime test
done = result.isProbablePrime(confidence);
}
return result;
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:17,代码来源:BigInteger.cs
示例6: SolovayStrassenTest
//***********************************************************************
// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
//
// p is probably prime if for any a < p (a is not multiple of p),
// a^((p-1)/2) mod p = J(a, p)
//
// where J is the Jacobi symbol.
//
// Otherwise, p is composite.
//
// Returns
// -------
// True if "this" is a Euler pseudoprime to randomly chosen
// bases. The number of chosen bases is given by the "confidence"
// parameter.
//
// False if "this" is definitely NOT prime.
//
//***********************************************************************
public bool SolovayStrassenTest(int confidence) {
BigInteger thisVal;
if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
thisVal = -this;
else
thisVal = this;
if (thisVal.dataLength == 1) {
// test small numbers
if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
return false;
else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
return true;
}
if ((thisVal.data[0] & 0x1) == 0) // even numbers
return false;
int bits = thisVal.bitCount();
BigInteger a = new BigInteger();
BigInteger p_sub1 = thisVal - 1;
BigInteger p_sub1_shift = p_sub1 >> 1;
Random rand = new Random();
for (int round = 0; round < confidence; round++) {
bool done = false;
while (!done) { // generate a < n
int testBits = 0;
// make sure "a" has at least 2 bits
while (testBits < 2)
testBits = (int)(rand.NextDouble() * bits);
a.genRandomBits(testBits, rand);
int byteLen = a.dataLength;
// make sure "a" is not 0
if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
done = true;
}
// check whether a factor exists (fix for version 1.03)
BigInteger gcdTest = a.gcd(thisVal);
if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
return false;
// calculate a^((p-1)/2) mod p
BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
if (expResult == p_sub1)
expResult = -1;
// calculate Jacobi symbol
BigInteger jacob = Jacobi(a, thisVal);
//Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
//Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));
// if they are different then it is not prime
if (expResult != jacob)
return false;
}
return true;
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:89,代码来源:BigInteger.cs
示例7: LucasStrongTestHelper
private bool LucasStrongTestHelper(BigInteger thisVal) {
// Do the test (selects D based on Selfridge)
// Let D be the first element of the sequence
// 5, -7, 9, -11, 13, ... for which J(D,n) = -1
// Let P = 1, Q = (1-D) / 4
long D = 5, sign = -1, dCount = 0;
bool done = false;
while (!done) {
int Jresult = BigInteger.Jacobi(D, thisVal);
if (Jresult == -1)
done = true; // J(D, this) = 1
else {
if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found
return false;
if (dCount == 20) {
// check for square
BigInteger root = thisVal.sqrt();
if (root * root == thisVal)
return false;
}
//Console.WriteLine(D);
D = (Math.Abs(D) + 2) * sign;
sign = -sign;
}
dCount++;
}
long Q = (1 - D) >> 2;
/*
Console.WriteLine("D = " + D);
Console.WriteLine("Q = " + Q);
Console.WriteLine("(n,D) = " + thisVal.gcd(D));
Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
*/
BigInteger p_add1 = thisVal + 1;
int s = 0;
for (int index = 0; index < p_add1.dataLength; index++) {
uint mask = 0x01;
for (int i = 0; i < 32; i++) {
if ((p_add1.data[index] & mask) != 0) {
index = p_add1.dataLength; // to break the outer loop
break;
}
mask <<= 1;
s++;
}
}
BigInteger t = p_add1 >> s;
// calculate constant = b^(2k) / m
// for Barrett Reduction
BigInteger constant = new BigInteger();
int nLen = thisVal.dataLength << 1;
constant.data[nLen] = 0x00000001;
constant.dataLength = nLen + 1;
constant = constant / thisVal;
BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
bool isPrime = false;
if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
(lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) {
// u(t) = 0 or V(t) = 0
isPrime = true;
}
for (int i = 1; i < s; i++) {
if (!isPrime) {
// doubling of index
lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;
//lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;
if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
isPrime = true;
}
lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k
}
if (isPrime) { // additional checks for composite numbers
// If n is prime and gcd(n, Q) == 1, then
// Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n
BigInteger g = thisVal.gcd(Q);
//.........这里部分代码省略.........
开发者ID:Ricordanza,项目名称:poderosa,代码行数:101,代码来源:BigInteger.cs
示例8: RabinMillerTest
//***********************************************************************
// Probabilistic prime test based on Rabin-Miller's
//
// for any p > 0 with p - 1 = 2^s * t
//
// p is probably prime (strong pseudoprime) if for any a < p,
// 1) a^t mod p = 1 or
// 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
//
// Otherwise, p is composite.
//
// Returns
// -------
// True if "this" is a strong pseudoprime to randomly chosen
// bases. The number of chosen bases is given by the "confidence"
// parameter.
//
// False if "this" is definitely NOT prime.
//
//***********************************************************************
public bool RabinMillerTest(int confidence) {
BigInteger thisVal;
if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
thisVal = -this;
else
thisVal = this;
if (thisVal.dataLength == 1) {
// test small numbers
if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
return false;
else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
return true;
}
if ((thisVal.data[0] & 0x1) == 0) // even numbers
return false;
// calculate values of s and t
BigInteger p_sub1 = thisVal - (new BigInteger(1));
int s = 0;
for (int index = 0; index < p_sub1.dataLength; index++) {
uint mask = 0x01;
for (int i = 0; i < 32; i++) {
if ((p_sub1.data[index] & mask) != 0) {
index = p_sub1.dataLength; // to break the outer loop
break;
}
mask <<= 1;
s++;
}
}
BigInteger t = p_sub1 >> s;
int bits = thisVal.bitCount();
BigInteger a = new BigInteger();
Random rand = new Random();
for (int round = 0; round < confidence; round++) {
bool done = false;
while (!done) { // generate a < n
int testBits = 0;
// make sure "a" has at least 2 bits
while (testBits < 2)
testBits = (int)(rand.NextDouble() * bits);
a.genRandomBits(testBits, rand);
int byteLen = a.dataLength;
// make sure "a" is not 0
if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
done = true;
}
// check whether a factor exists (fix for version 1.03)
BigInteger gcdTest = a.gcd(thisVal);
if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
return false;
BigInteger b = a.modPow(t, thisVal);
/*
Console.WriteLine("a = " + a.ToString(10));
Console.WriteLine("b = " + b.ToString(10));
Console.WriteLine("t = " + t.ToString(10));
Console.WriteLine("s = " + s);
*/
bool result = false;
if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1
result = true;
//.........这里部分代码省略.........
开发者ID:Ricordanza,项目名称:poderosa,代码行数:101,代码来源:BigInteger.cs
示例9: FermatLittleTest
//***********************************************************************
// Probabilistic prime test based on Fermat's little theorem
//
// for any a < p (p does not divide a) if
// a^(p-1) mod p != 1 then p is not prime.
//
// Otherwise, p is probably prime (pseudoprime to the chosen base).
//
// Returns
// -------
// True if "this" is a pseudoprime to randomly chosen
// bases. The number of chosen bases is given by the "confidence"
// parameter.
//
// False if "this" is definitely NOT prime.
//
// Note - this method is fast but fails for Carmichael numbers except
// when the randomly chosen base is a factor of the number.
//
//***********************************************************************
public bool FermatLittleTest(int confidence) {
BigInteger thisVal;
if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
thisVal = -this;
else
thisVal = this;
if (thisVal.dataLength == 1) {
// test small numbers
if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
return false;
else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
return true;
}
if ((thisVal.data[0] & 0x1) == 0) // even numbers
return false;
int bits = thisVal.bitCount();
BigInteger a = new BigInteger();
BigInteger p_sub1 = thisVal - (new BigInteger(1));
Random rand = new Random();
for (int round = 0; round < confidence; round++) {
bool done = false;
while (!done) { // generate a < n
int testBits = 0;
// make sure "a" has at least 2 bits
while (testBits < 2)
testBits = (int)(rand.NextDouble() * bits);
a.genRandomBits(testBits, rand);
int byteLen = a.dataLength;
// make sure "a" is not 0
if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
done = true;
}
// check whether a factor exists (fix for version 1.03)
BigInteger gcdTest = a.gcd(thisVal);
if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
return false;
// calculate a^(p-1) mod p
BigInteger expResult = a.modPow(p_sub1, thisVal);
int resultLen = expResult.dataLength;
// is NOT prime is a^(p-1) mod p != 1
if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1)) {
//Console.WriteLine("a = " + a.ToString());
return false;
}
}
return true;
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:83,代码来源:BigInteger.cs
示例10: gcd
//***********************************************************************
// Returns gcd(this, bi)
//***********************************************************************
public BigInteger gcd(BigInteger bi) {
BigInteger x;
BigInteger y;
if ((data[maxLength - 1] & 0x80000000) != 0) // negative
x = -this;
else
x = this;
if ((bi.data[maxLength - 1] & 0x80000000) != 0) // negative
y = -bi;
else
y = bi;
BigInteger g = y;
while (x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0)) {
g = x;
x = y % x;
y = g;
}
return g;
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:28,代码来源:BigInteger.cs
示例11: RSATest
//***********************************************************************
// Tests the correct implementation of the modulo exponential function
// using RSA encryption and decryption (using pre-computed encryption and
// decryption keys).
//***********************************************************************
public static void RSATest(int rounds) {
Random rand = new Random(1);
byte[] val = new byte[64];
// private and public key
BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);
BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);
BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);
Console.WriteLine("e =\n" + bi_e.ToString(10));
Console.WriteLine("\nd =\n" + bi_d.ToString(10));
Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");
for (int count = 0; count < rounds; count++) {
// generate data of random length
int t1 = 0;
while (t1 == 0)
t1 = (int)(rand.NextDouble() * 65);
bool done = false;
while (!done) {
for (int i = 0; i < 64; i++) {
if (i < t1)
val[i] = (byte)(rand.NextDouble() * 256);
else
val[i] = 0;
if (val[i] != 0)
done = true;
}
}
while (val[0] == 0)
val[0] = (byte)(rand.NextDouble() * 256);
Console.Write("Round = " + count);
// encrypt and decrypt data
BigInteger bi_data = new BigInteger(val, t1);
BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);
// compare
if (bi_decrypted != bi_data) {
Console.WriteLine("\nError at round " + count);
Console.WriteLine(bi_data + "\n");
return;
}
Console.WriteLine(" <PASSED>.");
}
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:58,代码来源:BigInteger.cs
示例12: genCoPrime
//***********************************************************************
// Generates a random number with the specified number of bits such
// that gcd(number, this) = 1
//***********************************************************************
public BigInteger genCoPrime(int bits, Random rand) {
bool done = false;
BigInteger result = new BigInteger();
while (!done) {
result.genRandomBits(bits, rand);
//Console.WriteLine(result.ToString(16));
// gcd test
BigInteger g = result.gcd(this);
if (g.dataLength == 1 && g.data[0] == 1)
done = true;
}
return result;
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:21,代码来源:BigInteger.cs
示例13: RSATest2
//***********************************************************************
// Tests the correct implementation of the modulo exponential and
// inverse modulo functions using RSA encryption and decryption. The two
// pseudoprimes p and q are fixed, but the two RSA keys are generated
// for each round of testing.
//***********************************************************************
public static void RSATest2(int rounds) {
Random rand = new Random();
byte[] val = new byte[64];
byte[] pseudoPrime1 = {
(byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
(byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
(byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
(byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
(byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
(byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
(byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
(byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
(byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
(byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
(byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
};
byte[] pseudoPrime2 = {
(byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
(byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
(byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
(byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
(byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
(byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
(byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
(byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
(byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
(byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
(byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
};
BigInteger bi_p = new BigInteger(pseudoPrime1);
BigInteger bi_q = new BigInteger(pseudoPrime2);
BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
BigInteger bi_n = bi_p * bi_q;
for (int count = 0; count < rounds; count++) {
// generate private and public key
BigInteger bi_e = bi_pq.genCoPrime(512, rand);
BigInteger bi_d = bi_e.modInverse(bi_pq);
Console.WriteLine("\ne =\n" + bi_e.ToString(10));
Console.WriteLine("\nd =\n" + bi_d.ToString(10));
Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");
// generate data of random length
int t1 = 0;
while (t1 == 0)
t1 = (int)(rand.NextDouble() * 65);
bool done = false;
while (!done) {
for (int i = 0; i < 64; i++) {
if (i < t1)
val[i] = (byte)(rand.NextDouble() * 256);
else
val[i] = 0;
if (val[i] != 0)
done = true;
}
}
while (val[0] == 0)
val[0] = (byte)(rand.NextDouble() * 256);
Console.Write("Round = " + count);
// encrypt and decrypt data
BigInteger bi_data = new BigInteger(val, t1);
BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);
// compare
if (bi_decrypted != bi_data) {
Console.WriteLine("\nError at round " + count);
Console.WriteLine(bi_data + "\n");
return;
}
Console.WriteLine(" <PASSED>.");
}
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:92,代码来源:BigInteger.cs
示例14: modInverse
//***********************************************************************
// Returns the modulo inverse of this. Throws ArithmeticException if
// the inverse does not exist. (i.e. gcd(this, modulus) != 1)
//***********************************************************************
public BigInteger modInverse(BigInteger modulus) {
BigInteger[] p = { 0, 1 };
BigInteger[] q = new BigInteger[2]; // quotients
BigInteger[] r = { 0, 0 }; // remainders
int step = 0;
BigInteger a = modulus;
BigInteger b = this;
while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0)) {
BigInteger quotient = new BigInteger();
BigInteger remainder = new BigInteger();
if (step > 1) {
BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
p[0] = p[1];
p[1] = pval;
}
if (b.dataLength == 1)
singleByteDivide(a, b, quotient, remainder);
else
multiByteDivide(a, b, quotient, remainder);
/*
Console.WriteLine(quotient.dataLength);
Console.WriteLine("{0} = {1}({2}) + {3} p = {4}", a.ToString(10),
b.ToString(10), quotient.ToString(10), remainder.ToString(10),
p[1].ToString(10));
*/
q[0] = q[1];
r[0] = r[1];
q[1] = quotient;
r[1] = remainder;
a = b;
b = remainder;
step++;
}
if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
throw (new ArithmeticException("No inverse!"));
BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);
if ((result.data[maxLength - 1] & 0x80000000) != 0)
result += modulus; // get the least positive modulus
return result;
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:58,代码来源:BigInteger.cs
示例15: Main1
public static void Main1(string[] args) {
// Known problem -> these two pseudoprimes passes my implementation of
// primality test but failed in JDK's isProbablePrime test.
byte[] pseudoPrime1 = { (byte)0x00,
(byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
(byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
(byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
(byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
(byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
(byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
(byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
(byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
(byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
(byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
(byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
};
byte[] pseudoPrime2 = { (byte)0x00,
(byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
(byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
(byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
(byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
(byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
(byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
(byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
(byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
(byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
(byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
(byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
};
Console.WriteLine("List of primes < 2000\n---------------------");
int limit = 100, count = 0;
for (int i = 0; i < 2000; i++) {
if (i >= limit) {
Console.WriteLine();
limit += 100;
}
BigInteger p = new BigInteger(-i);
if (p.isProbablePrime()) {
Console.Write(i + ", ");
count++;
}
}
Console.WriteLine("\nCount = " + count);
BigInteger bi1 = new BigInteger(pseudoPrime1);
Console.WriteLine("\n\nPrimality testing for\n" + bi1.ToString() + "\n");
Console.WriteLine("SolovayStrassenTest(5) = " + bi1.SolovayStrassenTest(5));
Console.WriteLine("RabinMillerTest(5) = " + bi1.RabinMillerTest(5));
Console.WriteLine("FermatLittleTest(5) = " + bi1.FermatLittleTest(5));
Console.WriteLine("isProbablePrime() = " + bi1.isProbablePrime());
Console.Write("\nGenerating 512-bits random pseudoprime. . .");
Random rand = new Random();
BigInteger prime = BigInteger.genPseudoPrime(512, 5, rand);
Console.WriteLine("\n" + prime);
//int dwStart = System.Environment.TickCount;
//BigInteger.MulDivTest(100000);
//BigInteger.RSATest(10);
//BigInteger.RSATest2(10);
//Console.WriteLine(System.Environment.TickCount - dwStart);
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:69,代码来源:BigInteger.cs
示例16: sqrt
//***********************************************************************
// Returns a value that is equivalent to the integer square root
// of the BigInteger.
//
// The integer square root of "this" is defined as the largest integer n
// such that (n * n) <= this
//
//***********************************************************************
public BigInteger sqrt() {
uint numBits = (uint)this.bitCount();
if ((numBits & 0x1) != 0) // odd number of bits
numBits = (numBits >> 1) + 1;
else
numBits = (numBits >> 1);
uint bytePos = numBits >> 5;
byte bitPos = (byte)(numBits & 0x1F);
uint mask;
BigInteger result = new BigInteger();
if (bitPos == 0)
mask = 0x80000000;
else {
mask = (uint)1 << bitPos;
bytePos++;
}
result.dataLength = (int)bytePos;
for (int i = (int)bytePos - 1; i >= 0; i--) {
while (mask != 0) {
// guess
result.data[i] ^= mask;
// undo the guess if its square is larger than this
if ((result * result) > this)
result.data[i] ^= mask;
mask >>= 1;
}
mask = 0x80000000;
}
return result;
}
开发者ID:Ricordanza,项目名称:poderosa,代码行数:46,代码来源:BigInteger.cs
示例17: LucasSequence
//***********************************************************************
// Returns the k_th number in the Lucas Sequence reduced modulo n.
//
// Uses index doubling to speed up the process. For example, to calculate V(k),
// we maintain two numbers in the sequence V(n) and V(n+1).
//
// To obtain V(2n), we use the identity
// V(2n) = (V(n) * V(n)) - (2 * Q^n)
// To obtain V(2n+1), we first write it as
// V(2n+1) = V((n+1) + n)
// and use the identity
// V(m+n) = V(m) * V(n) - Q * V(m-n)
// Hence,
// V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
// = V(n+1) * V(n) - Q^n * V(1)
// = V(n+1) * V(n) - Q^n * P
//
// We use k in its binary expansion and perform index doubling for each
// bit position. For each bit position that is set, we perform an
// index doubling followed by an index addition. This means that for V(n),
// we need to update it to V(2n+1). For V(n+1), we need to update it to
// V((2n+1)+1) = V(2*(n+1))
//
// This function returns
// [0] = U(k)
// [1] = V(k)
// [2] = Q^n
//
// Where U(0) = 0 % n, U(1) = 1 % n
// V(0) = 2 % n, V(1) = P % n
//***********************************************************************
public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,
BigInteger k, BigInteger n) {
if (k.dataLength == 1 && k.data[0] == 0) {
BigInteger[] result = new BigInteger[3];
result[0] = 0;
result[1] = 2 % n;
result[2] = 1 % n;
return result;
}
// calculate constant = b^(2k) / m
// for Barrett Reduction
BigInteger constant = new BigInteger();
int nLen = n.dataLength << 1;
constant.data[nLen] = 0x00000001;
constant.dataLength = nLen + 1;
constant = constant / n;
// calculate values of s and t
int s = 0;
for (int index = 0; index < k.dataLength; index++) {
uint mask = 0x01;
for (int i = 0; i < 32; i++) {
if ((k.data[index] & mask) != 0) {
index = k.dataLength; // to break the outer loop
break;
}
mask <<= 1;
|
请发表评论