• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python pylab.boxplot函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pylab.boxplot函数的典型用法代码示例。如果您正苦于以下问题:Python boxplot函数的具体用法?Python boxplot怎么用?Python boxplot使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了boxplot函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: prob_dispersion

def prob_dispersion(target, result, prob, nclasses=5, save_as=''):
  classprob = [[] for i in 2 * range(nclasses)]
  for i in xrange(len(result)):
    p = prob[i][result[i]]
    if result[i] == target[i]:
      classprob[2*result[i]].append(p)
    else:
      classprob[2*result[i] + 1].append(p)

  xlabels = [[str(i+1) + "-Good", str(i+1) + "-Bad"] for i in range(nclasses)]
  xlabels = reduce(list.__add__, xlabels, [])

  # Plotting the result
  fig = plt.figure()
  fig.suptitle('Probability distribution' , fontsize=20)
  plot = fig.add_subplot(111)
  pylab.boxplot(classprob)
  pylab.xticks(range(1, 2 * nclasses + 1), xlabels)
  plot.set_xlabel('Predicted' , fontsize = 16)
  plot.set_ylabel('Probabilities' , fontsize = 16)
  plot.tick_params(axis='both', which='major', labelsize=14)
  plot.tick_params(axis='both', which='minor', labelsize=8)
  
  # Save options
  if save_as =='':
    plt.show()
  else :
    fig.savefig(save_as)
开发者ID:NicolasEhrhardt,项目名称:YelpChallenge,代码行数:28,代码来源:classification.py


示例2: chart

def chart(SW, a, b, label, folder, FILE):
    pylab.ioff()
    fig_width_pt = 350 					     # Get this from LaTeX using \showthe\columnwidth
    inches_per_pt = 1.0/72.27                # Convert pt to inch
    golden_mean = ((5**0.5)-1.0)/2.0         # Aesthetic ratio
    fig_width = fig_width_pt*inches_per_pt   # width in inches   
    fig_height = fig_width*golden_mean       # height in inches
    fig_size =  [fig_width,fig_height]

    params = { 'backend': 'ps',
           'axes.labelsize': 10,
           'text.fontsize': 10,
           'legend.fontsize': 10,
           'xtick.labelsize': 8,
           'ytick.labelsize': 8,
           'text.usetex': True,
           'figure.figsize': fig_size }

    pylab.rcParams.update(params)

    home = '/home/nealbob'
    img_ext = '.pdf'

    pylab.figure()
    pylab.boxplot([SW['SWA'], SW['OA'], SW['NS']], whis=5)
    pylab.axhline(y=1.0, color='0.5', linewidth=0.5, alpha=0.75, linestyle=':')
    pylab.ylim(a, b)
    pylab.ylabel(label)
    pylab.tick_params(axis='x', which = 'both', labelbottom='off')
    pylab.figtext(0.225, 0.06, 'SWA', fontsize = 10)
    pylab.figtext(0.495, 0.06, 'OA', fontsize = 10)
    pylab.figtext(0.76, 0.06, 'NS', fontsize = 10)
    pylab.savefig(home + folder + FILE + img_ext)
    pylab.show()
开发者ID:nealbob,项目名称:regrivermod,代码行数:34,代码来源:chartbuilder.py


示例3: makeboxplot

def makeboxplot(filteredclusts, dblibrary, figname, pool=False):
    '''takes a filtered dict of clusts worth keeping and creates a boxplot of either by lane (default) or pool'''
    indiv_cluster_count = defaultdict(int) 
    for clust, inddict in filteredclusts.items():
        for ind, reads in inddict.items():
            if ind in indiv_cluster_count.keys():
                indiv_cluster_count[ind]+=1
            else:
                indiv_cluster_count[ind]+=1 
    
    t = gdata_tools.get_table_as_dict(dblibrary)
    db_ind_countd = Util.countdict([d['sampleid'] for d in t if d['sampleid'] in indiv_cluster_count.keys()[3]]) #creates a table of individual dicts from google spreadsheet
    indiv_by_group = defaultdict(list)
    for d in t:
        if 'pool' in d:
            indkey = (d.get('flowcell',None),d.get('lane',None),d.get('index',None),d.get('sampleid',None))
            if indkey in indiv_cluster_count:
                if pool == True:
                    indiv_by_group[(d['flowcell'],d['lane'],d.get('index',None),d['pool'])].append(indiv_cluster_count[indkey]) 
                else:
                    indiv_by_group[(d['flowcell'],d['lane'],d.get('index',None))].append(indiv_cluster_count[indkey])
    
    boxes = []
    labels = []
    for group,indcounts in indiv_by_group.items():
        boxes.append(indcounts)
        labels.append(group)
    boxplt = pylab.figure(1)
    pylab.boxplot(boxes)
    pylab.xticks(arange(1,(len(labels)+1)),labels,fontsize='small') #legend with best location (0) if pools
    boxplt.savefig(figname)
开发者ID:alexagrf,项目名称:rtd,代码行数:31,代码来源:pool_lane_counts.py


示例4: quartile_plot

def quartile_plot(
        fits,
        group_index_start, group_index_end,
        model_param_index,
        ylim=None,
        log=True,
        xlabel=None,
        ylabel=None,
        labels=None):
    model_param_values = [
        fit_params(fits, group_index, model_param_index)
        for group_index in xrange(
            group_index_start, group_index_end)
    ]
    fig = plt.figure(figsize=(len(model_param_values), 7))
    if log is True:
        plt.yscale('log')
    if ylim is not None:
        plt.ylim(ylim)
    if xlabel is not None:
        plt.xlabel(xlabel)
    if ylabel is not None:
        plt.ylabel(ylabel)
    plt.boxplot(
        model_param_values,
        labels=labels,
        showmeans=True)
    plt.grid()
    plt.show()
开发者ID:tomasra,项目名称:ga_sandbox,代码行数:29,代码来源:results.py


示例5: chart

def chart(idx, a, b, label, FILE):
    pylab.ioff()
    fig_width_pt = 350 					     # Get this from LaTeX using \showthe\columnwidth
    inches_per_pt = 1.0/72.27                # Convert pt to inch
    golden_mean = ((5**0.5)-1.0)/2.0         # Aesthetic ratio
    fig_width = fig_width_pt*inches_per_pt   # width in inches   
    fig_height = fig_width*golden_mean       # height in inches
    fig_size =  [fig_width*0.42,fig_height]

    params = { 'backend': 'ps',
           'axes.labelsize': 10,
           'text.fontsize': 10,
           'legend.fontsize': 10,
           'xtick.labelsize': 8,
           'ytick.labelsize': 8,
           'text.usetex': True,
           'figure.figsize': fig_size }

    pylab.rcParams.update(params)

    home = '/home/nealbob'
    folder = '/Dropbox/Thesis/IMG/chapter3/'
    img_ext = '.pdf'

    pylab.figure()
    pylab.boxplot(idx, whis=100)
    pylab.ylim(a, b)
    #pylab.ylabel(label)
    pylab.tick_params(axis='x', which = 'both', labelbottom='off')
    pylab.savefig(home + folder + FILE + img_ext)
    pylab.show()
开发者ID:nealbob,项目名称:regrivermod,代码行数:31,代码来源:chart3.py


示例6: whiskers

def whiskers(i1, i2, lab1="", lab2=""):
    width = 0.35
    l1 = pb.boxplot([d[:, i1] for d in data] , positions=np.arange(len(data))-1.03*width/2., widths=width)
    l2 = pb.boxplot([d[:, i2] for d in data] , positions=np.arange(len(data))+1.03*width/2., widths=width)
    pb.xticks(np.arange(len(data)),[fn.split('raw')[0].replace('_',' ') for fn in fnames], rotation=45)
    pb.xlim(-1.2*width, len(data)-1+1.2*width)

    for key, lines in l1.iteritems():
        pb.setp(lines, lw=1)
        if key == "boxes":
            pb.setp(lines, color='b', lw=1.4)
        if key == 'whiskers':
            pb.setp(lines, color='b')
        if key == 'fliers':
            pb.setp(lines, color='b')
        if key == 'medians':
            pb.setp(lines, color='k', lw=1.4)
    for key, lines in l2.iteritems():
        pb.setp(lines, lw=1.2)
        if key == "boxes":
            pb.setp(lines, color='g', lw=1.4)
        if key == 'whiskers':
            pb.setp(lines, color='g')
        if key == 'fliers':
            pb.setp(lines, color='g')
        if key == 'medians':
            pb.setp(lines, color='k', lw=1.4)
开发者ID:SheffieldML,项目名称:TVB,代码行数:27,代码来源:plot_classification_comparison.py


示例7: plot

def plot():
    swarmsize_marks = [20, 50, 100, 200]
    times = {}
    for mark in swarmsize_marks:
        times[mark] = []
    for time_filename, size_filename, label, style in lines_to_plot:
        time_file = open('parser_results/' + time_filename)
        size_file = open('parser_results/' + size_filename)
        for line in time_file:
            time = float(line.split()[0])
            size = int(size_file.next().split()[0])
            for mark in swarmsize_marks:
                if size <= mark:
                    times[mark].append(time)
                    break
    xs = []
    labels = []
    for mark in swarmsize_marks:
        xs.append(times[mark])
        labels.append('<=%d' % mark)
    pylab.boxplot(xs)
    pylab.setp(pylab.gca(), 'xticklabels', labels)
    pylab.savefig(output_filename)
#    pylab.close()
    

    print 'Output saved to:', output_filename
开发者ID:GlobalSquare,项目名称:pymdht,代码行数:27,代码来源:plot_box_time_vs_swarmsize.py


示例8: do_proc

def do_proc(resdir, timedir):
    """
    EXPS on IPC6_SEQ_ELEVATORS_12 & IPC6_TEMPO_OPENSTACKS_17
    steadyState=50
    1) popsize=48 & runmax=1 & maxseconds=0
    2) RESTART case: popsize=96 & runmax=0 & maxseconds=1799
    foreach nthreads: 1, 24, 48
    repeat 11 times
    """

    if not options.cores: return

    for field, popsize, runmax, maxseconds in [
        ("PROC", 48, 1, 0),
        #("RESTART_PROC", 96, 0, 1799)
        ]:
        for name, domain, instance in SAMPLES:
            local_logger = logging.getLogger("GECCO2011.PROC.%s" % name)
            plotdata = []
            for num in range(1, options.nruns+1):
                subdata = []
                for nthreads in [1, 24, 48]:
                    field_name = "%s_%s_%d" % (field, "DYNAMIC" if options.dynamic else "STATIC", nthreads)
                    time_filename = PATTERN_TIME_FILENAME % {"TIMEDIR": timedir, "NAME": name, "FIELD": field_name, "NUM": num}
                    res_filename = PATTERN_RES_FILENAME % {"RESDIR": resdir, "NAME": name, "FIELD": field_name, "NUM": num}
                    plan_filename = PATTERN_PLAN_FILENAME % {"RESDIR": resdir, "NAME": name, "FIELD": field_name, "NUM": num}
                    cmd = PATTERN_CMD % {"DOMAIN": domain,
                                         "INSTANCE": instance,
                                         "LOOP": 1,
                                         "DYNAMIC": 1 if options.dynamic else 0,
                                         "THREADS": nthreads,
                                         "RUNMAX": runmax,
                                         "POPSIZE": popsize,
                                         "OFFSPRINGS": popsize*7,
                                         "MAXSECONDS": maxseconds,
                                         "GENSTEADY": 50,
                                         "TIME_FILENAME": time_filename,
                                         "RES_FILENAME": res_filename,
                                         "PLAN_FILENAME": plan_filename,
                                         }
                    local_logger.debug(cmd)
                    if options.execute:
                        os.system( cmd )
                    if options.plot:
                        try:
                            f = open(time_filename).readlines()
                            t1 = float(f[1].split()[-1])
                            tp = f[4].split()[-1].split(':')
                            tp = float(int(tp[0]) * 60 + float(tp[1]))
                            subdata.append([t1, tp, t1 / tp])
                        except IOError:
                            pass

                if options.plot:
                    if len(subdata):
                        plotdata.append(subdata)

            if options.plot:
                local_logger.info(plotdata)
                pylab.boxplot( plotdata )
开发者ID:aquemy,项目名称:descarwin,代码行数:60,代码来源:GECCO2011.py


示例9: graphDepthComparison

def graphDepthComparison(benchType):
    clf()
    
    data = filter(table,
                  timestamp=range(1336921433, 1336922429+1),
                  benchType=benchType)
    writeUnits = 160
    
    xData = project(data, 'depth')
    yData = project(data, 'latency')
    
    print len(xData)
    print len(yData)
    
    # Each sample represents 5 trials.
    yData = map(lambda x:x/5, yData)
    
    (xData, yData) = condense(xData, yData)
    
    pylab.boxplot(yData)
    fmt = ticker.FixedFormatter(map(str, xData))
    ax = gca()
    ax.get_xaxis().set_major_formatter(fmt)
    ax.set_ylabel("Sequential 4K block write latency (s)")
    ax.set_xlabel("Depth (number of parent directories)")
    ax.get_yaxis().grid(color='gray', linestyle='dashed')
    ax.get_yaxis().set_major_locator(ticker.MaxNLocator(10))
    title('Backend: DynamoDB; Provisioning Units = %d' % writeUnits)
    pylab.ylim([0,0.1])
    
    pylab.show()
开发者ID:igorcanadi,项目名称:DynamoFS,代码行数:31,代码来源:graphDynamoDBvsS3.py


示例10: graphPageSizeComparison

def graphPageSizeComparison(benchType, backend, writeUnits):
    clf()
    
    data = filter(table,
                  benchType=benchType,
                  backend=backend,
                  writeUnits=writeUnits)
    
    xData = project(data, 'pageSize')
    yData = project(data, 'latency')
    
    # Each sample represents 10 trials.
    yData = map(lambda x:x/10, yData)
    
    (xData, yData) = condense(xData, yData)
    
    pylab.boxplot(yData)
    fmt = ticker.FixedFormatter(map(str, xData))
    ax = gca()
    ax.get_xaxis().set_major_formatter(fmt)
    ax.set_ylabel("Sequential 4K block write latency (s)")
    ax.set_xlabel("Page size (B)")
    ax.get_yaxis().grid(color='gray', linestyle='dashed')
    ax.get_yaxis().set_major_locator(ticker.MaxNLocator(15))
    if backend == 's3':
        title('Backend: S3')
    else:
        title('Backend: DynamoDB; Provisioning Units = %d' % writeUnits)
    
    pylab.show()
开发者ID:igorcanadi,项目名称:DynamoFS,代码行数:30,代码来源:graphDynamoDBvsS3.py


示例11: plot_res_paper

def plot_res_paper(df):
    """

    :param df:  contain field classifier_name, accuarcy, and fold
    :return:
    """
    ticks = []
    i = 0
    data_to_plot = []
    for g, v in df.groupby(df.classifier_name):
        data_to_plot.append(v['accuracy'].values)
        ticks.append(g)
        print v
    pylab.boxplot(data_to_plot)
    pylab.xticks(range(1, 1+ len(data_to_plot)), ticks)



    pylab.gca().invert_xaxis()
    pylab.ylabel('Classification accuracy')
    pylab.xlabel('Fold (cross validation fold for test)')
    pylab.gca().yaxis.set_ticks(np.arange(0, 1, 0.1))
    pylab.ylim((0,1))
    pylab.legend()
    pylab.show()
    return
开发者ID:arventwei,项目名称:protolab_sound_recognition,代码行数:26,代码来源:evaluate_learning.py


示例12: genderBoxplots

    def genderBoxplots(self, women, men, labels, path):
        data = [women.edition_count.values, men.edition_count.values]

        plt.figure()
        plt.boxplot(data)

        # mark the mean
        means = [np.mean(x) for x in data]
        print(means)

        plt.scatter(range(1, len(data) + 1), means, color="red", marker=">", s=20)
        plt.ylabel("num editions")
        plt.xticks(range(1, len(data) + 1), labels)
        plt.savefig(
            path + "/numeditions_gender_box_withOutlier" + self.pre + "-" + self.post + ".png", bbox_inches="tight"
        )

        plt.figure()
        plt.boxplot(data, sym="")
        # mark the mean
        means = [np.mean(x) for x in data]
        print(means)

        plt.scatter(range(1, len(data) + 1), means, color="red", marker=">", s=20)
        plt.ylabel("num editions")
        plt.xticks(range(1, len(data) + 1), labels)
        plt.savefig(path + "/numeditions_gender_box" + self.pre + "-" + self.post + ".png", bbox_inches="tight")
开发者ID:clauwag,项目名称:WikipediaGenderInequality,代码行数:27,代码来源:GlobalWikipediaPopularity.py


示例13: finalgen

def finalgen(names):
    names = eval(names)
    totaleff = []
    for name in names:
        resultsfolder = "results/"+name+"/"
        final = resultsfolder + "gen049.dat"
        population = []
        name = final.rstrip('.dat')
        efflist = []

        resultsfile = open(final, 'r')
        for line in resultsfile:
            population.append(eval(line))

        for indiv in population:
            # if "fullrandom" in name:
            #     print "found", name
            #     lift = indiv['fitness'][0] - 0.5
            # else:
            lift = indiv['fitness'][0]
            drag = 5.0 - indiv['fitness'][1]
            efficiency = lift/drag
            efflist.append(efficiency)
        aveeff = ave(efflist)
        stdeff = std(efflist,aveeff)
        print "efficieny average", aveeff, "+-", stdeff
        totaleff.append(efflist)
    pylab.boxplot(totaleff)
    pylab.show()
    
    bwblift, bwbdrag = LIFT, 5 - DRAG
    print "bwbefficiency", bwblift/bwbdrag
开发者ID:squeakus,项目名称:planegen,代码行数:32,代码来源:plot.py


示例14: analyze

def analyze(real, samples, skip=0, thr=0.9):
  real = pickle.load(open(real, 'rb'))
  samples = pickle.load(open(samples, 'rb'))
  thr=float(thr)

  def flatten(measurements):
    shared, exclusive = [], []
    for es, ss in measurements:
      exclusive.extend(es[skip:])
      shared.extend(ss[skip:])
    return exclusive, shared

  true_values = OrderedDict()
  for vm, measurements in real.results.items():
    shared, exclusive = flatten(measurements)
    true_values[vm] = mean(shared)/mean(exclusive)
  print(true_values)

  means = OrderedDict()
  nums = []
  avgms, avgdevs = [], []
  #for vm, measurements in sorted(samples.results.items()):
  for vm, measurements in sorted(samples.results.items()):
    print("calculating", vm)
    shared, exclusive = flatten(measurements)
    def myfilter(l): return [e for e in l if e != 0]
    shared = myfilter(shared)
    exclusive = myfilter(exclusive)
    ns = []
    true = true_values[vm]
    for _ in range(1000):
      sh_samples, exc_samples = [], []
      n = 0
      while True:
        n += 1
        sh_samples.append(choice(shared))
        exc_samples.append(choice(exclusive))
        cur = mean(sh_samples)/mean(exc_samples)
        prec = 1 - abs(1-cur/true)
        if prec > thr:
          ns.append(n)
          break
        if n > 20:
          print(vm, "max precision:", prec)
          break
    if not ns:
      print("no data points for", vm)
      continue
    nums.append(ns)
    #m = mean(ns)
    #d = pstdev(ns)
    #rd = d/m*100
    #avgdevs.append(rd)
    #avgms.append(m)
    #print("{vm}: {m:.1f} {rd:.1f}%".format(vm=vm, m=m,d=d,rd=rd))
    #means[vm]=mean(nums)
  ticks = real.mapping
  p.xticks(range(len(ticks)), ticks)
  p.boxplot(nums)
开发者ID:kopchik,项目名称:perforator,代码行数:59,代码来源:plot.py


示例15: main

def main():
    # exon, intron, unknown
    specific = [[], [], []]
    nonspecific = [[], [], []]
    foldspecific = [[], [], []]
    foldnonspecific = [[], [], []]
    for prefix in sys.argv[1:]:
        tempexonic, tempspecific, tempnonspecific, tempfoldspecific, tempfoldnonspecific, templength = getData(
            prefix + ".exonic.overlap.out.annotation.txt", ["exon"]
        )
        exonic = tempexonic[0]
        exoniclength = templength[0]
        specific[0].append(tempspecific[0])
        nonspecific[0].append(tempnonspecific[0])
        foldspecific[0].append(tempfoldspecific[0])
        foldnonspecific[0].append(tempfoldnonspecific[0])
        tempData, tempspecific, tempnonspecific, tempfoldspecific, tempfoldnonspecific, templength = getData(
            prefix + ".novel.overlap.out.annotation.txt", ["intron", "unknown"]
        )
        intronic = tempData[0]
        unknown = tempData[1]
        introniclength = templength[0]
        unknownlength = templength[1]
        specific[1].append(tempspecific[0])
        specific[2].append(tempspecific[1])
        nonspecific[1].append(tempnonspecific[0])
        nonspecific[2].append(tempnonspecific[1])
        foldspecific[1].append(tempfoldspecific[0])
        foldspecific[2].append(tempfoldspecific[1])
        foldnonspecific[1].append(tempfoldnonspecific[0])
        foldnonspecific[2].append(tempfoldnonspecific[1])
        plotData = [exonic, intronic, unknown]
        print prefix
        print "exonic: ", len(exonic)
        print "intronic: ", len(intronic)
        print "unknown: ", len(unknown)
        fig = pl.figure()
        pl.boxplot(plotData)
        pl.ylim([2, 15])
        pl.ylabel("Log Expression Level")
        pl.xticks([1, 2, 3], ["Exonic", "Intronic", "Unknown"])
        pl.title(prefix.replace("_fsorted", "").replace("_", " "))
        fig.savefig(prefix + ".expression.png", dpi=fig.dpi)

        fig = pl.figure()
        pl.boxplot([exoniclength, introniclength, unknownlength])
        pl.ylim([60, 2500])
        pl.ylabel("Transcript Length")
        pl.xticks([1, 2, 3], ["Exonic", "Intronic", "Unknown"])
        pl.title(prefix.replace("_fsorted", "").replace("_", " "))
        fig.savefig(prefix + ".length.png", dpi=fig.dpi)
        # pl.show()
    abbr = []
    for i in sys.argv[1:]:
        tokens = i.split("_")
        abbr.append(tokens[0][0].upper() + tokens[1][0:2].title())
    plotSpec(specific, nonspecific, abbr, ["exonic", "intronic", "unknown"], "abs")
    plotSpec(foldspecific, foldnonspecific, abbr, ["exonic", "intronic", "unknown"], "fold")
开发者ID:hjanime,项目名称:CSI,代码行数:58,代码来源:boxPlot.py


示例16: vizFeature

    def vizFeature(self):
        minPoints = []
        
        col = ['b','g','r','c','m','y','k','w']
        
        boxpoints = []
                
        feat = self.mainWindow.subFeatCmb.currentText()
        
        bplot = self.mainWindow.boxPlotCheck.checkState()
        
        glyphNames = [thumb.scene().glyphtxt for thumb in self.thumbNails[0] if thumb.scene().created]
        #print glyphNames
        
        for ind in range(self.mainWindow.tabWidget.count()):
            for thumb in self.thumbNails[ind]:
                if thumb.scene().created:
                    feat = getattr(thumb.scene().windowS,self.FeatSelect[self.mainWindow.featCmb.currentText()])
                    subFeat = getattr(self,self.FeatSelect[self.mainWindow.featCmb.currentText()]+'Val')[self.mainWindow.subFeatCmb.currentText()]
                    
                    minPoints.append(feat[subFeat])
        
            if not bplot:
                pylab.plot(minPoints,col[ind],label=self.mainWindow.tabWidget.tabText(ind))
                pylab.plot(minPoints,'ro')
            else:
                boxpoints.append(minPoints)
                
                
            minPoints = []
            
        scriptNames = [self.mainWindow.tabWidget.tabText(ind) for ind in range(self.mainWindow.tabWidget.count())]
            
#        pylab.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.)    
        
        if not bplot:
            pylab.xticks(range(len(glyphNames)),glyphNames)  
            pylab.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.)        
            pylab.show()           
        else:
            pylab.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.)   
            pylab.xticks(range(len(scriptNames)),scriptNames)             
            pylab.boxplot(boxpoints)
            pylab.show()
        
#        import rpy2.robjects as R
#        
#        result = R.r['t.test'](R.IntVector(boxpoints[0]),R.IntVector(boxpoints[1]))
#
#        k =  str(result)[str(result).find('p-value = '):]
#
#        print k        

        points1 = []
        points2 = []
        
        strokes = []
开发者ID:virtualvinodh,项目名称:scriptanalyzer,代码行数:57,代码来源:scriptAnalyzerWindow.py


示例17: plotChart

def plotChart(resultObj, patternName, stockPriceDataObj):
    print resultObj[0].identifyPos
    for patternData in resultObj:
        processedData = stockPriceDataObj[patternData.code]
        plt.boxplot(map(lambda res: (res[1], res[2], res[3], res[4]), processedData))
        plt.plot([patternData.upperLine.startX + 1, patternData.upperLine.endX + 1], [patternData.upperLine.startPriceY, patternData.upperLine.endPriceY])
        plt.plot([patternData.downLine.startX + 1, patternData.downLine.endX + 1], [patternData.downLine.startPriceY, patternData.downLine.endPriceY])
        plt.axvline(x = patternData.identifyPos + 1, color='red')
        plt.savefig("../demoImg/%s/%s" % (patternName, patternData.code))
        plt.clf()
开发者ID:k-utsubo,项目名称:stock,代码行数:10,代码来源:createTrendLine.py


示例18: UnivarDescStat

	def UnivarDescStat(self,Data,FileOutPath):
		# Analitic Descriptives text
		N = len(Data)
		Mean = np.mean(Data)
		Minimum = np.min(Data)
		Maximum = np.max(Data)
		Variance = np.var(Data)
		Std = np.std(Data)
		
		MinimumQ = np.percentile(Data,0)
		Q1 = np.percentile(Data,25)
		Median = np.percentile(Data,50)
		Q3 = np.percentile(Data,75)
		MaximumQ = np.percentile(Data,100)
		
		
		txt = ("\nN : {0:8d}".format(N))
		txt = txt + ("\nMean : {0:8.6f}".format(Mean))
		txt = txt + ("\nMinimum : {0:8.6f}".format(Minimum))
		txt = txt + ("\nMaximum : {0:8.6f}".format(Maximum))
		txt = txt + ("\nVariance : {0:8.6f}".format(Variance))
		txt = txt + ("\nStd. deviation : {0:8.6f}".format(Std))
		txt = txt + ("\n\n\n")
		txt = txt + ("\nMinimum : {0:8.6f}".format(MinimumQ))
		txt = txt + ("\n1st Quartile : {0:8.6f}".format(Q1))
		txt = txt + ("\nMedian : {0:8.6f}".format(Median))
		txt = txt + ("\n3rd Quartile : {0:8.6f}".format(Q3))
		txt = txt + ("\nMaximum : {0:8.6f}".format(MaximumQ))
		

		# Grid to plot into.
		G = gridspec.GridSpec(2, 2, width_ratios=[2, 1])
		
		# Plot Analitics
		axes_1 = P.subplot(G[:,1])
		axes_1.set_title("Analitics")
		axes_1.axis('off')
		P.text(0.15, 0.25, txt, size=12)
		
		# Histogram and...
		axes_2 = P.subplot(G[0,0])	
		axes_2.set_title("Histogram")
		n, bins, patches = P.hist(Data, 15, normed=1)
		# ... PDF Plots (Probability Distribution Function)
		y = mlab.normpdf( bins, Mean, Std)
		P.plot(bins, y, 'r--', linewidth=1)
		P.ylabel('Probability')
			
		# Plot boxplot
		axes_3 = P.subplot(G[1,0])
		axes_3.set_title("Boxplot")
		P.boxplot(Data,0,'rs',0);
		
		# Store as SVG
		P.savefig(FileOutPath)
开发者ID:imathresearch,项目名称:iMathCloud_HPC,代码行数:55,代码来源:plotFunctions.py


示例19: plotStats

 def plotStats(self,save) :
     
     figure()
     # show boxplot, iff we have enough data
     if min(map(len, self.stat_avg_z)) > 3 :        
         data = self.stat_avg_z
         boxplot(data,1)
     #else :
     figure()
     data2 = self.stat_avg_z_total
     plot(data2)
     show()
开发者ID:sergiyvan,项目名称:robotic_vl,代码行数:12,代码来源:pgrl.py


示例20: generate

	def generate( filenames ):
	    for cur in filenames:
		filename = RESULT_FILE_FORMAT % (pwd, cur, p, ps, P, d, ds, D, r, s)
		pylab.boxplot( get_boxplot_data( filename ) )
		nonzero = lambda x: x if x > 0 else 1
		iters = ( nonzero( P - p ) / ps ) * ( nonzero( D - d ) / ds )
		pylab.xlabel('%d iterations from %d,%d to %d,%d' % ( iters, p, d, P, D) )
		pylab.ylabel('%s - %s' % (cur, name))
		pylab.savefig( filename + '.pdf', format='pdf' )
		pylab.savefig( filename + '.png', format='png' )
		pylab.cla()
		pylab.clf()
开发者ID:AdeleH,项目名称:paradiseo,代码行数:12,代码来源:t-openmp.py



注:本文中的pylab.boxplot函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pylab.ceil函数代码示例发布时间:2022-05-25
下一篇:
Python pylab.barh函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap