本文整理汇总了Golang中github.com/btcsuite/btcd/wire.DoubleSha256函数的典型用法代码示例。如果您正苦于以下问题:Golang DoubleSha256函数的具体用法?Golang DoubleSha256怎么用?Golang DoubleSha256使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了DoubleSha256函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Golang代码示例。
示例1: ToBytesChecksum
// ToBytesChecksum converts a string to a byte slice using the PGP
// word list. Notably, it strips words of their case, so any case
// input is valid. Unlike ToBytes, it uses a sha256d hash to verify
// the integrity of the data after.
func ToBytesChecksum(s string) ([]byte, error) {
b, err := ToBytes(s)
if err != nil {
return nil, err
}
bdata := b[:len(b)-1]
hash := wire.DoubleSha256(bdata)
toUse := uint16(0)
toUse = uint16(uint8(hash[0])) * 2
// Odd numbered byte for last char.
if (len(b) % 2) == 0 {
toUse++
}
checksumCalc := WordList[toUse]
strSlice := strings.Split(s, " ")
checksum := strings.ToLower(strSlice[len(strSlice)-1])
if checksum != checksumCalc {
return nil, fmt.Errorf("checksum failure: got %v, expected %v",
checksum, checksumCalc)
}
return bdata, nil
}
开发者ID:pkothbauer,项目名称:dcraddrgen,代码行数:30,代码来源:pgpwordlist.go
示例2: String
// String returns the extended key as a human-readable base58-encoded string.
func (k *ExtendedKey) String() string {
if len(k.key) == 0 {
return "zeroed extended key"
}
var childNumBytes [4]byte
depthByte := byte(k.depth % 256)
binary.BigEndian.PutUint32(childNumBytes[:], k.childNum)
// The serialized format is:
// version (4) || depth (1) || parent fingerprint (4)) ||
// child num (4) || chain code (32) || key data (33) || checksum (4)
serializedBytes := make([]byte, 0, serializedKeyLen+4)
serializedBytes = append(serializedBytes, k.version...)
serializedBytes = append(serializedBytes, depthByte)
serializedBytes = append(serializedBytes, k.parentFP...)
serializedBytes = append(serializedBytes, childNumBytes[:]...)
serializedBytes = append(serializedBytes, k.chainCode...)
if k.isPrivate {
serializedBytes = append(serializedBytes, 0x00)
serializedBytes = paddedAppend(32, serializedBytes, k.key)
} else {
serializedBytes = append(serializedBytes, k.pubKeyBytes()...)
}
checkSum := wire.DoubleSha256(serializedBytes)[:4]
serializedBytes = append(serializedBytes, checkSum...)
return base58.Encode(serializedBytes)
}
开发者ID:solefaucet,项目名称:sole-server,代码行数:30,代码来源:extendedkey.go
示例3: Example_signMessage
// This example demonstrates signing a message with a secp256k1 private key that
// is first parsed form raw bytes and serializing the generated signature.
func Example_signMessage() {
// Decode a hex-encoded private key.
pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" +
"20ee63e502ee2869afab7de234b80c")
if err != nil {
fmt.Println(err)
return
}
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
// Sign a message using the private key.
message := "test message"
messageHash := wire.DoubleSha256([]byte(message))
signature, err := privKey.Sign(messageHash)
if err != nil {
fmt.Println(err)
return
}
// Serialize and display the signature.
fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
// Verify the signature for the message using the public key.
verified := signature.Verify(messageHash, pubKey)
fmt.Printf("Signature Verified? %v\n", verified)
// Output:
// Serialized Signature: 304402201008e236fa8cd0f25df4482dddbb622e8a8b26ef0ba731719458de3ccd93805b022032f8ebe514ba5f672466eba334639282616bb3c2f0ab09998037513d1f9e3d6d
// Signature Verified? true
}
开发者ID:Wishing-Wall,项目名称:wishingwall,代码行数:32,代码来源:example_test.go
示例4: Example_signMessage
// This example demonstrates signing a message with a secp256k1 private key that
// is first parsed form raw bytes and serializing the generated signature.
func Example_signMessage() {
// Decode a hex-encoded private key.
pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" +
"20ee63e502ee2869afab7de234b80c")
if err != nil {
fmt.Println(err)
return
}
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
// Sign a message using the private key.
message := "test message"
messageHash := wire.DoubleSha256([]byte(message))
signature, err := privKey.Sign(messageHash)
if err != nil {
fmt.Println(err)
return
}
// Serialize and display the signature.
//
// NOTE: This is commented out for the example since the signature
// produced uses random numbers and therefore will always be different.
//fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
// Verify the signature for the message using the public key.
verified := signature.Verify(messageHash, pubKey)
fmt.Printf("Signature Verified? %v\n", verified)
// Output:
// Signature Verified? true
}
开发者ID:jimmysong,项目名称:btcd,代码行数:34,代码来源:example_test.go
示例5: getTriedBucket
func (a *AddrManager) getTriedBucket(netAddr *wire.NetAddress) int {
// bitcoind hashes this as:
// doublesha256(key + group + truncate_to_64bits(doublesha256(key)) % buckets_per_group) % num_buckets
data1 := []byte{}
data1 = append(data1, a.key[:]...)
data1 = append(data1, []byte(NetAddressKey(netAddr))...)
hash1 := wire.DoubleSha256(data1)
hash64 := binary.LittleEndian.Uint64(hash1)
hash64 %= triedBucketsPerGroup
var hashbuf [8]byte
binary.LittleEndian.PutUint64(hashbuf[:], hash64)
data2 := []byte{}
data2 = append(data2, a.key[:]...)
data2 = append(data2, GroupKey(netAddr)...)
data2 = append(data2, hashbuf[:]...)
hash2 := wire.DoubleSha256(data2)
return int(binary.LittleEndian.Uint64(hash2) % triedBucketCount)
}
开发者ID:Wishing-Wall,项目名称:wishingwall,代码行数:19,代码来源:addrmanager.go
示例6: HashMerkleBranches
// HashMerkleBranches takes two hashes, treated as the left and right tree
// nodes, and returns the hash of their concatenation. This is a helper
// function used to aid in the generation of a merkle tree.
func HashMerkleBranches(left *wire.ShaHash, right *wire.ShaHash) *wire.ShaHash {
// Concatenate the left and right nodes.
var sha [wire.HashSize * 2]byte
copy(sha[:wire.HashSize], left.Bytes())
copy(sha[wire.HashSize:], right.Bytes())
// Create a new sha hash from the double sha 256. Ignore the error
// here since SetBytes can't fail here due to the fact DoubleSha256
// always returns a []byte of the right size regardless of input.
newSha, _ := wire.NewShaHash(wire.DoubleSha256(sha[:]))
return newSha
}
开发者ID:jimmysong,项目名称:btcd,代码行数:15,代码来源:merkle.go
示例7: getNewBucket
func (a *AddrManager) getNewBucket(netAddr, srcAddr *wire.NetAddress) int {
// bitcoind:
// doublesha256(key + sourcegroup + int64(doublesha256(key + group + sourcegroup))%bucket_per_source_group) % num_new_buckets
data1 := []byte{}
data1 = append(data1, a.key[:]...)
data1 = append(data1, []byte(GroupKey(netAddr))...)
data1 = append(data1, []byte(GroupKey(srcAddr))...)
hash1 := wire.DoubleSha256(data1)
hash64 := binary.LittleEndian.Uint64(hash1)
hash64 %= newBucketsPerGroup
var hashbuf [8]byte
binary.LittleEndian.PutUint64(hashbuf[:], hash64)
data2 := []byte{}
data2 = append(data2, a.key[:]...)
data2 = append(data2, GroupKey(srcAddr)...)
data2 = append(data2, hashbuf[:]...)
hash2 := wire.DoubleSha256(data2)
return int(binary.LittleEndian.Uint64(hash2) % newBucketCount)
}
开发者ID:Wishing-Wall,项目名称:wishingwall,代码行数:21,代码来源:addrmanager.go
示例8: NewTxRecord
// NewTxRecord creates a new transaction record that may be inserted into the
// store. It uses memoization to save the transaction hash and the serialized
// transaction.
func NewTxRecord(serializedTx []byte, received time.Time) (*TxRecord, error) {
rec := &TxRecord{
Received: received,
SerializedTx: serializedTx,
}
err := rec.MsgTx.Deserialize(bytes.NewReader(serializedTx))
if err != nil {
str := "failed to deserialize transaction"
return nil, storeError(ErrInput, str, err)
}
copy(rec.Hash[:], wire.DoubleSha256(serializedTx))
return rec, nil
}
开发者ID:badzso,项目名称:btcwallet,代码行数:16,代码来源:tx.go
示例9: NewKeyFromString
// NewKeyFromString returns a new extended key instance from a base58-encoded
// extended key.
func NewKeyFromString(key string) (*ExtendedKey, error) {
// The base58-decoded extended key must consist of a serialized payload
// plus an additional 4 bytes for the checksum.
decoded := base58.Decode(key)
if len(decoded) != serializedKeyLen+4 {
return nil, ErrInvalidKeyLen
}
// The serialized format is:
// version (4) || depth (1) || parent fingerprint (4)) ||
// child num (4) || chain code (32) || key data (33) || checksum (4)
// Split the payload and checksum up and ensure the checksum matches.
payload := decoded[:len(decoded)-4]
checkSum := decoded[len(decoded)-4:]
expectedCheckSum := wire.DoubleSha256(payload)[:4]
if !bytes.Equal(checkSum, expectedCheckSum) {
return nil, ErrBadChecksum
}
// Deserialize each of the payload fields.
version := payload[:4]
depth := uint16(payload[4:5][0])
parentFP := payload[5:9]
childNum := binary.BigEndian.Uint32(payload[9:13])
chainCode := payload[13:45]
keyData := payload[45:78]
// The key data is a private key if it starts with 0x00. Serialized
// compressed pubkeys either start with 0x02 or 0x03.
isPrivate := keyData[0] == 0x00
if isPrivate {
// Ensure the private key is valid. It must be within the range
// of the order of the secp256k1 curve and not be 0.
keyData = keyData[1:]
keyNum := new(big.Int).SetBytes(keyData)
if keyNum.Cmp(btcec.S256().N) >= 0 || keyNum.Sign() == 0 {
return nil, ErrUnusableSeed
}
} else {
// Ensure the public key parses correctly and is actually on the
// secp256k1 curve.
_, err := btcec.ParsePubKey(keyData, btcec.S256())
if err != nil {
return nil, err
}
}
return newExtendedKey(version, keyData, chainCode, parentFP, depth,
childNum, isPrivate), nil
}
开发者ID:solefaucet,项目名称:sole-server,代码行数:53,代码来源:extendedkey.go
示例10: NewTxRecordFromMsgTx
// NewTxRecordFromMsgTx creates a new transaction record that may be inserted
// into the store.
func NewTxRecordFromMsgTx(msgTx *wire.MsgTx, received time.Time) (*TxRecord, error) {
buf := bytes.NewBuffer(make([]byte, 0, msgTx.SerializeSize()))
err := msgTx.Serialize(buf)
if err != nil {
str := "failed to serialize transaction"
return nil, storeError(ErrInput, str, err)
}
rec := &TxRecord{
MsgTx: *msgTx,
Received: received,
SerializedTx: buf.Bytes(),
}
copy(rec.Hash[:], wire.DoubleSha256(rec.SerializedTx))
return rec, nil
}
开发者ID:badzso,项目名称:btcwallet,代码行数:17,代码来源:tx.go
示例11: ToStringChecksum
// ToStringChecksum converts a byteslice to a string of words from the
// PGP word list, along with a one word checksum appended to the end.
// The checksum is the first byte of the sha256d hash.
func ToStringChecksum(b []byte) (string, error) {
str, err := ToString(b)
if err != nil {
return "", err
}
hash := wire.DoubleSha256(b)
toUse := uint16(0)
toUse = uint16(uint8(hash[0])) * 2
// Odd numbered byte for last char.
if (len(b) % 2) != 0 {
toUse++
}
return str + " " + WordList[toUse], nil
}
开发者ID:pkothbauer,项目名称:dcraddrgen,代码行数:21,代码来源:pgpwordlist.go
示例12: String
// String creates the Wallet Import Format string encoding of a WIF structure.
// See DecodeWIF for a detailed breakdown of the format and requirements of
// a valid WIF string.
func (w *WIF) String() string {
// Precalculate size. Maximum number of bytes before base58 encoding
// is one byte for the network, 32 bytes of private key, possibly one
// extra byte if the pubkey is to be compressed, and finally four
// bytes of checksum.
encodeLen := 1 + btcec.PrivKeyBytesLen + 4
if w.CompressPubKey {
encodeLen++
}
a := make([]byte, 0, encodeLen)
a = append(a, w.netID)
// Pad and append bytes manually, instead of using Serialize, to
// avoid another call to make.
a = paddedAppend(btcec.PrivKeyBytesLen, a, w.PrivKey.D.Bytes())
if w.CompressPubKey {
a = append(a, compressMagic)
}
cksum := wire.DoubleSha256(a)[:4]
a = append(a, cksum...)
return base58.Encode(a)
}
开发者ID:CrowBits,项目名称:btcutil,代码行数:25,代码来源:wif.go
示例13: Example_verifySignature
// This example demonstrates verifying a secp256k1 signature against a public
// key that is first parsed from raw bytes. The signature is also parsed from
// raw bytes.
func Example_verifySignature() {
// Decode hex-encoded serialized public key.
pubKeyBytes, err := hex.DecodeString("02a673638cb9587cb68ea08dbef685c" +
"6f2d2a751a8b3c6f2a7e9a4999e6e4bfaf5")
if err != nil {
fmt.Println(err)
return
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
fmt.Println(err)
return
}
// Decode hex-encoded serialized signature.
sigBytes, err := hex.DecodeString("30450220090ebfb3690a0ff115bb1b38b" +
"8b323a667b7653454f1bccb06d4bbdca42c2079022100ec95778b51e707" +
"1cb1205f8bde9af6592fc978b0452dafe599481c46d6b2e479")
if err != nil {
fmt.Println(err)
return
}
signature, err := btcec.ParseSignature(sigBytes, btcec.S256())
if err != nil {
fmt.Println(err)
return
}
// Verify the signature for the message using the public key.
message := "test message"
messageHash := wire.DoubleSha256([]byte(message))
verified := signature.Verify(messageHash, pubKey)
fmt.Println("Signature Verified?", verified)
// Output:
// Signature Verified? true
}
开发者ID:Wishing-Wall,项目名称:wishingwall,代码行数:41,代码来源:example_test.go
示例14: DecodeWIF
// DecodeWIF creates a new WIF structure by decoding the string encoding of
// the import format.
//
// The WIF string must be a base58-encoded string of the following byte
// sequence:
//
// * 1 byte to identify the network, must be 0x80 for mainnet or 0xef for
// either testnet3 or the regression test network
// * 32 bytes of a binary-encoded, big-endian, zero-padded private key
// * Optional 1 byte (equal to 0x01) if the address being imported or exported
// was created by taking the RIPEMD160 after SHA256 hash of a serialized
// compressed (33-byte) public key
// * 4 bytes of checksum, must equal the first four bytes of the double SHA256
// of every byte before the checksum in this sequence
//
// If the base58-decoded byte sequence does not match this, DecodeWIF will
// return a non-nil error. ErrMalformedPrivateKey is returned when the WIF
// is of an impossible length or the expected compressed pubkey magic number
// does not equal the expected value of 0x01. ErrChecksumMismatch is returned
// if the expected WIF checksum does not match the calculated checksum.
func DecodeWIF(wif string) (*WIF, error) {
decoded := base58.Decode(wif)
decodedLen := len(decoded)
var compress bool
// Length of base58 decoded WIF must be 32 bytes + an optional 1 byte
// (0x01) if compressed, plus 1 byte for netID + 4 bytes of checksum.
switch decodedLen {
case 1 + btcec.PrivKeyBytesLen + 1 + 4:
if decoded[33] != compressMagic {
return nil, ErrMalformedPrivateKey
}
compress = true
case 1 + btcec.PrivKeyBytesLen + 4:
compress = false
default:
return nil, ErrMalformedPrivateKey
}
// Checksum is first four bytes of double SHA256 of the identifier byte
// and privKey. Verify this matches the final 4 bytes of the decoded
// private key.
var tosum []byte
if compress {
tosum = decoded[:1+btcec.PrivKeyBytesLen+1]
} else {
tosum = decoded[:1+btcec.PrivKeyBytesLen]
}
cksum := wire.DoubleSha256(tosum)[:4]
if !bytes.Equal(cksum, decoded[decodedLen-4:]) {
return nil, ErrChecksumMismatch
}
netID := decoded[0]
privKeyBytes := decoded[1 : 1+btcec.PrivKeyBytesLen]
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), privKeyBytes)
return &WIF{privKey, compress, netID}, nil
}
开发者ID:CrowBits,项目名称:btcutil,代码行数:58,代码来源:wif.go
示例15: calcSignatureHash
// calcSignatureHash will, given a script and hash type for the current script
// engine instance, calculate the signature hash to be used for signing and
// verification.
func calcSignatureHash(script []parsedOpcode, hashType SigHashType, tx *wire.MsgTx, idx int) []byte {
// The SigHashSingle signature type signs only the corresponding input
// and output (the output with the same index number as the input).
//
// Since transactions can have more inputs than outputs, this means it
// is improper to use SigHashSingle on input indices that don't have a
// corresponding output.
//
// A bug in the original Satoshi client implementation means specifying
// an index that is out of range results in a signature hash of 1 (as a
// uint256 little endian). The original intent appeared to be to
// indicate failure, but unfortunately, it was never checked and thus is
// treated as the actual signature hash. This buggy behavior is now
// part of the consensus and a hard fork would be required to fix it.
//
// Due to this, care must be taken by software that creates transactions
// which make use of SigHashSingle because it can lead to an extremely
// dangerous situation where the invalid inputs will end up signing a
// hash of 1. This in turn presents an opportunity for attackers to
// cleverly construct transactions which can steal those coins provided
// they can reuse signatures.
if hashType&sigHashMask == SigHashSingle && idx >= len(tx.TxOut) {
var hash wire.ShaHash
hash[0] = 0x01
return hash[:]
}
// Remove all instances of OP_CODESEPARATOR from the script.
script = removeOpcode(script, OP_CODESEPARATOR)
// Make a deep copy of the transaction, zeroing out the script for all
// inputs that are not currently being processed.
txCopy := tx.Copy()
for i := range txCopy.TxIn {
if i == idx {
// UnparseScript cannot fail here because removeOpcode
// above only returns a valid script.
sigScript, _ := unparseScript(script)
txCopy.TxIn[idx].SignatureScript = sigScript
} else {
txCopy.TxIn[i].SignatureScript = nil
}
}
switch hashType & sigHashMask {
case SigHashNone:
txCopy.TxOut = txCopy.TxOut[0:0] // Empty slice.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
case SigHashSingle:
// Resize output array to up to and including requested index.
txCopy.TxOut = txCopy.TxOut[:idx+1]
// All but current output get zeroed out.
for i := 0; i < idx; i++ {
txCopy.TxOut[i].Value = -1
txCopy.TxOut[i].PkScript = nil
}
// Sequence on all other inputs is 0, too.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
default:
// Consensus treats undefined hashtypes like normal SigHashAll
// for purposes of hash generation.
fallthrough
case SigHashOld:
fallthrough
case SigHashAll:
// Nothing special here.
}
if hashType&SigHashAnyOneCanPay != 0 {
txCopy.TxIn = txCopy.TxIn[idx : idx+1]
idx = 0
}
// The final hash is the double sha256 of both the serialized modified
// transaction and the hash type (encoded as a 4-byte little-endian
// value) appended.
var wbuf bytes.Buffer
txCopy.Serialize(&wbuf)
binary.Write(&wbuf, binary.LittleEndian, hashType)
return wire.DoubleSha256(wbuf.Bytes())
}
开发者ID:wallclockbuilder,项目名称:btcd,代码行数:95,代码来源:script.go
注:本文中的github.com/btcsuite/btcd/wire.DoubleSha256函数示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论