本文整理汇总了Java中org.deeplearning4j.berkeley.Pair类的典型用法代码示例。如果您正苦于以下问题:Java Pair类的具体用法?Java Pair怎么用?Java Pair使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
Pair类属于org.deeplearning4j.berkeley包,在下文中一共展示了Pair类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。
示例1: init
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
private void init(String location) {
csv = new File(location);
pair = new HashMap<>();
sentenceToPhrase = new HashMap<>();
CSV csv1 = CSV.separator('\t')
.ignoreLeadingWhiteSpace().skipLines(1)
.create();
//PhraseId SentenceId Phrase Sentiment
csv1.read(csv,new CSVReadProc() {
@Override
public void procRow(int rowIndex, String... values) {
//sentence id -> phrase id
List<String> phrases = sentenceToPhrase.get(values[1]);
if(phrases == null) {
phrases = new ArrayList<>();
sentenceToPhrase.put(values[1],phrases);
}
phrases.add(values[2]);
pair.put(values[0],new Pair<>(values[2],values[3]));
}
});
}
开发者ID:ihuerga,项目名称:deeplearning4j-nlp-examples,代码行数:26,代码来源:TextRetriever.java
示例2: predict
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
public List<Pair<String, Double>> predict(@NotNull String name, @NotNull SourceSegment source, @NotNull List<var> inputs) {
/*
Now we'll iterate over unlabeled data, and check which label it could be assigned to
Please note: for many domains it's normal to have 1 document fall into few labels at once,
with different "weight" for each.
*/
MeansBuilder meansBuilder = new MeansBuilder((InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable(),
tokenizerFactory);
LabelSeeker seeker = new LabelSeeker(iterator.getLabelsSource().getLabels(),
(InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable());
LabelledDocument document = new LabelledDocument();
document.setContent(signatureToText(name, inputs));
INDArray documentAsCentroid = meansBuilder.documentAsVector(document);
List<Pair<String, Double>> scores = seeker.getScores(documentAsCentroid);
return scores;
}
开发者ID:sillelien,项目名称:dollar,代码行数:21,代码来源:ParagraphVectorsClassifierExample.java
示例3: getScores
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
/**
* This method accepts vector, that represents any document,
* and returns distances between this document, and previously trained categories
* @return
*/
public List<Pair<String, Double>> getScores(@NonNull INDArray vector) {
List<Pair<String, Double>> result = new ArrayList<>();
for (String label: labelsUsed) {
INDArray vecLabel = lookupTable.vector(label);
if (vecLabel == null) throw new IllegalStateException("Label '"+ label+"' has no known vector!");
double sim = Transforms.cosineSim(vector, vecLabel);
result.add(new Pair<String, Double>(label, sim));
}
return result;
}
开发者ID:tteofili,项目名称:par2hier,代码行数:17,代码来源:LabelSeeker.java
示例4: testRetrieval
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
@Test
public void testRetrieval() throws Exception {
Map<String,Pair<String,String>> data = retriever.data();
Pair<String,String> phrase2 = data.get("2");
assertEquals("A series of escapades demonstrating the adage that what is good for the goose",phrase2.getFirst());
assertEquals("2",phrase2.getSecond());
}
开发者ID:ihuerga,项目名称:deeplearning4j-nlp-examples,代码行数:9,代码来源:TextRetrieverTest.java
示例5: getScores
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
/**
* This method accepts vector, that represents any document,
* and returns distances between this document, and previously trained categories
*
* @return
*/
@Nonnull
public List<Pair<String, Double>> getScores(@Nonnull INDArray vector) {
List<Pair<String, Double>> result = new ArrayList<>();
for (String label : labelsUsed) {
INDArray vecLabel = lookupTable.vector(label);
if (vecLabel == null) throw new IllegalStateException("Label '" + label + "' has no known vector!");
double sim = Transforms.cosineSim(vector, vecLabel);
result.add(new Pair<>(label, sim));
}
return result;
}
开发者ID:sillelien,项目名称:dollar,代码行数:19,代码来源:LabelSeeker.java
示例6: predict
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
@Nullable
@Override
public TypePrediction predict(@NotNull String name, @NotNull SourceSegment source, @NotNull List<var> inputs) {
try {
List<Pair<String, Double>> scores = classifier.predict(name, source, inputs);
log.info("Predictions: ");
log.info("{}", scores);
return new SmartTypePrediction(scores);
} catch (Exception e) {
log.debug(e.getMessage(), e);
return new SingleValueTypePrediction(Type._ANY);
}
}
开发者ID:sillelien,项目名称:dollar,代码行数:16,代码来源:SmartTypeLearner.java
示例7: probability
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
@Override
public @NotNull Double probability(@NotNull Type type) {
for (Pair<String, Double> score : scores) {
if (score.getFirst().equals(type.name())) {
return score.getSecond() / 2 + 0.5;
}
}
return 0.0;
}
开发者ID:sillelien,项目名称:dollar,代码行数:10,代码来源:SmartTypeLearner.java
示例8: probableType
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
@Override
public @Nullable Type probableType() {
Pair<String, Double> max = scores.stream().max(Comparator.comparing(Pair::getSecond)).orElse(null);
if (max != null) {
return Type.of(max.getFirst());
}
return null;
}
开发者ID:sillelien,项目名称:dollar,代码行数:9,代码来源:SmartTypeLearner.java
示例9: checkUnlabeledData
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
void checkUnlabeledData() throws FileNotFoundException {
/*
At this point we assume that we have model built and we can check
which categories our unlabeled document falls into.
So we'll start loading our unlabeled documents and checking them
*/
ClassPathResource unClassifiedResource = new ClassPathResource("paravec/unlabeled");
FileLabelAwareIterator unClassifiedIterator = new FileLabelAwareIterator.Builder()
.addSourceFolder(unClassifiedResource.getFile())
.build();
/*
Now we'll iterate over unlabeled data, and check which label it could be assigned to
Please note: for many domains it's normal to have 1 document fall into few labels at once,
with different "weight" for each.
*/
MeansBuilder meansBuilder = new MeansBuilder(
(InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable(),
tokenizerFactory);
LabelSeeker seeker = new LabelSeeker(iterator.getLabelsSource().getLabels(),
(InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable());
while (unClassifiedIterator.hasNextDocument()) {
LabelledDocument document = unClassifiedIterator.nextDocument();
INDArray documentAsCentroid = meansBuilder.documentAsVector(document);
List<Pair<String, Double>> scores = seeker.getScores(documentAsCentroid);
/*
please note, document.getLabel() is used just to show which document we're looking at now,
as a substitute for printing out the whole document name.
So, labels on these two documents are used like titles,
just to visualize our classification done properly
*/
log.info("Document '" + document.getLabel() + "' falls into the following categories: ");
for (Pair<String, Double> score : scores) {
log.info(" " + score.getFirst() + ": " + score.getSecond());
}
}
}
开发者ID:sillelien,项目名称:dollar,代码行数:41,代码来源:ParagraphVectorsClassifierExample.java
示例10: main
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
ClassPathResource resource = new ClassPathResource("paravec/labeled");
iter = new FileLabelAwareIterator.Builder()
.addSourceFolder(resource.getFile())
.build();
tFact = new DefaultTokenizerFactory();
tFact.setTokenPreProcessor(new CommonPreprocessor());
pVect = new ParagraphVectors.Builder()
.learningRate(0.025)
.minLearningRate(0.001)
.batchSize(1000)
.epochs(20)
.iterate(iter)
.trainWordVectors(true)
.tokenizerFactory(tFact)
.build();
pVect.fit();
ClassPathResource unlabeledText = new ClassPathResource("paravec/unlabeled");
FileLabelAwareIterator unlabeledIter = new FileLabelAwareIterator.Builder()
.addSourceFolder(unlabeledText.getFile())
.build();
MeansBuilder mBuilder = new MeansBuilder(
(InMemoryLookupTable<VocabWord>) pVect.getLookupTable(),
tFact);
LabelSeeker lSeeker = new LabelSeeker(iter.getLabelsSource().getLabels(),
(InMemoryLookupTable<VocabWord>) pVect.getLookupTable());
while (unlabeledIter.hasNextDocument()) {
LabelledDocument doc = unlabeledIter.nextDocument();
INDArray docCentroid = mBuilder.documentAsVector(doc);
List<Pair<String, Double>> scores = lSeeker.getScores(docCentroid);
out.println("Document '" + doc.getLabel() + "' falls into the following categories: ");
for (Pair<String, Double> score : scores) {
out.println(" " + score.getFirst() + ": " + score.getSecond());
}
}
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:49,代码来源:ParagraphVectorsClassifierExample.java
示例11: data
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
public Map<String,Pair<String,String>> data() {
return pair;
}
开发者ID:ihuerga,项目名称:deeplearning4j-nlp-examples,代码行数:4,代码来源:TextRetriever.java
示例12: checkUnlabelledData
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
private void checkUnlabelledData(Word2Vec paragraphVectors, LabelAwareIterator iterator, TokenizerFactory tokenizerFactory) throws FileNotFoundException {
ClassPathResource unClassifiedResource = new ClassPathResource("papers/unlabeled");
FileLabelAwareIterator unClassifiedIterator = new FileLabelAwareIterator.Builder()
.addSourceFolder(unClassifiedResource.getFile())
.build();
MeansBuilder meansBuilder = new MeansBuilder(
(InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable(),
tokenizerFactory);
LabelSeeker seeker = new LabelSeeker(iterator.getLabelsSource().getLabels(),
(InMemoryLookupTable<VocabWord>) paragraphVectors.getLookupTable());
System.out.println(paragraphVectors + " classification results");
double cc = 0;
double size = 0;
while (unClassifiedIterator.hasNextDocument()) {
LabelledDocument document = unClassifiedIterator.nextDocument();
INDArray documentAsCentroid = meansBuilder.documentAsVector(document);
List<Pair<String, Double>> scores = seeker.getScores(documentAsCentroid);
double max = -Integer.MAX_VALUE;
String cat = null;
for (Pair<String, Double> p : scores) {
if (p.getSecond() > max) {
max = p.getSecond();
cat = p.getFirst();
}
}
if (document.getLabels().contains(cat)) {
cc++;
}
size++;
}
System.out.println("acc:" + (cc / size));
}
开发者ID:tteofili,项目名称:par2hier,代码行数:38,代码来源:Par2HierClassificationTest.java
示例13: SmartTypePrediction
import org.deeplearning4j.berkeley.Pair; //导入依赖的package包/类
public SmartTypePrediction(List<Pair<String, Double>> scores) {this.scores = scores;}
开发者ID:sillelien,项目名称:dollar,代码行数:2,代码来源:SmartTypeLearner.java
注:本文中的org.deeplearning4j.berkeley.Pair类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论