• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Java PipelineResult类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中com.google.cloud.dataflow.sdk.PipelineResult的典型用法代码示例。如果您正苦于以下问题:Java PipelineResult类的具体用法?Java PipelineResult怎么用?Java PipelineResult使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



PipelineResult类属于com.google.cloud.dataflow.sdk包,在下文中一共展示了PipelineResult类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: waitToFinish

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
/**
 * If {@literal DataflowPipelineRunner} or {@literal BlockingDataflowPipelineRunner} is used,
 * waits for the pipeline to finish and cancels it (and the injector) before the program exists.
 */
public void waitToFinish(PipelineResult result) {
  if (result instanceof DataflowPipelineJob) {
    final DataflowPipelineJob job = (DataflowPipelineJob) result;
    jobsToCancel.add(job);
    if (!options.as(DataflowExampleOptions.class).getKeepJobsRunning()) {
      addShutdownHook(jobsToCancel);
    }
    try {
      job.waitToFinish(-1, TimeUnit.SECONDS, new MonitoringUtil.PrintHandler(System.out));
    } catch (Exception e) {
      throw new RuntimeException("Failed to wait for job to finish: " + job.getJobId());
    }
  } else {
    // Do nothing if the given PipelineResult doesn't support waitToFinish(),
    // such as EvaluationResults returned by DirectPipelineRunner.
  }
}
 
开发者ID:sinmetal,项目名称:iron-hippo,代码行数:22,代码来源:DataflowExampleUtils.java


示例2: run

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
/** Run a Docker workflow on Dataflow. */
public static void run(Workflow w, Map<String, WorkflowArgs> a, DataflowPipelineOptions o)
    throws IOException {
  LOG.info("Running workflow graph");
  if (w.getArgs().getProjectId() == null) {
    throw new IllegalArgumentException("Project id is required");
  }

  Pipeline p = DataflowFactory.dataflow(w, a, o);

  LOG.info("Created Dataflow pipeline");
  LOG.debug(w.toString());

  PipelineResult r = p.run();

  LOG.info("Dataflow pipeline completed");
  LOG.info("Result state: " + r.getState());
}
 
开发者ID:googlegenomics,项目名称:dockerflow,代码行数:19,代码来源:TaskRunner.java


示例3: run

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
/**
 * Run the pipeline.
 * @throws AggregatorRetrievalException
 */
public DesiredStateEnforcer run() throws AggregatorRetrievalException {
  PipelineResult result = this.pipeline.run();

  AggregatorValues<Long> aggregatorValues = result.getAggregatorValues(
          discrepancyAutoFixMessenger.getTotalEnforcedStatesAggregator());
  this.enforcedStates =
      aggregatorValues.getTotalValue(
          discrepancyAutoFixMessenger.getTotalEnforcedStatesAggregator().getCombineFn());
  return this;
}
 
开发者ID:GoogleCloudPlatform,项目名称:policyscanner,代码行数:15,代码来源:DesiredStateEnforcer.java


示例4: main

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise6Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise6Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference sessionsTable = new TableReference();
    sessionsTable.setDatasetId(options.getOutputDataset());
    sessionsTable.setProjectId(options.getProject());
    sessionsTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // [START EXERCISE 6]:
    // Detect user sessions-- that is, a burst of activity separated by a gap from further
    // activity. Find and record the mean session lengths.
    // This information could help the game designers track the changing user engagement
    // as their set of games changes.
    userEvents
        // Window the user events into sessions with gap options.getSessionGap() minutes. Make sure
        // to use an outputTimeFn that sets the output timestamp to the end of the window. This will
        // allow us to compute means on sessions based on their end times, rather than their start
        // times.
        .apply(
            /* TODO: YOUR CODE GOES HERE */
            new ChangeMe<PCollection<KV<String, Integer>>, KV<String, Integer>>())
        // For this use, we care only about the existence of the session, not any particular
        // information aggregated over it, so the following is an efficient way to do that.
        .apply(Combine.perKey(x -> 0))
        // Get the duration per session.
        .apply("UserSessionActivity", ParDo.of(new UserSessionInfoFn()))
        // Re-window to process groups of session sums according to when the sessions complete.
        // In streaming we don't just ask "what is the mean value" we must ask "what is the mean
        // value for some window of time". To compute periodic means of session durations, we
        // re-window the session durations.
        .apply(
            /* TODO: YOUR CODE GOES HERE */
            new ChangeMe<PCollection<Integer>, Integer>())
        // Find the mean session duration in each window.
        .apply(Mean.<Integer>globally().withoutDefaults())
        // Write this info to a BigQuery table.
        .apply(ParDo.named("FormatSessions").of(new FormatSessionWindowFn()))
        .apply(
            BigQueryIO.Write.to(sessionsTable)
                .withSchema(FormatSessionWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));
    // [END EXERCISE 6]:

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:65,代码来源:Exercise6.java


示例5: main

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
  Exercise4Options options =
      PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise4Options.class);
  // Enforce that this pipeline is always run in streaming mode.
  options.setStreaming(true);
  // For example purposes, allow the pipeline to be easily cancelled instead of running
  // continuously.
  options.setRunner(DataflowPipelineRunner.class);
  Pipeline pipeline = Pipeline.create(options);

  TableReference teamTable = new TableReference();
  teamTable.setDatasetId(options.getOutputDataset());
  teamTable.setProjectId(options.getProject());
  teamTable.setTableId(options.getOutputTableName() + "_team");

  TableReference userTable = new TableReference();
  userTable.setDatasetId(options.getOutputDataset());
  userTable.setProjectId(options.getProject());
  userTable.setTableId(options.getOutputTableName() + "_user");

  PCollection<GameEvent> gameEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

  gameEvents
      .apply(
          "CalculateTeamScores",
          new CalculateTeamScores(
              Duration.standardMinutes(options.getTeamWindowDuration()),
              Duration.standardMinutes(options.getAllowedLateness())))
      // Write the results to BigQuery.
      .apply(ParDo.named("FormatTeamScores").of(new FormatTeamScoreFn()))
      .apply(
          BigQueryIO.Write.to(teamTable)
              .withSchema(FormatTeamScoreFn.getSchema())
              .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
              .withWriteDisposition(WriteDisposition.WRITE_APPEND));

  gameEvents
      .apply(
          "CalculateUserScores",
          new CalculateUserScores(Duration.standardMinutes(options.getAllowedLateness())))
      // Write the results to BigQuery.
      .apply(ParDo.named("FormatUserScores").of(new FormatUserScoreFn()))
      .apply(
          BigQueryIO.Write.to(userTable)
              .withSchema(FormatUserScoreFn.getSchema())
              .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
              .withWriteDisposition(WriteDisposition.WRITE_APPEND));

  // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
  // command line.
  PipelineResult result = pipeline.run();
}
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:53,代码来源:Exercise4.java


示例6: main

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
  Exercise7Options options =
      PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise7Options.class);
  // Enforce that this pipeline is always run in streaming mode.
  options.setStreaming(true);
  // Allow the pipeline to be cancelled automatically.
  options.setRunner(DataflowPipelineRunner.class);
  Pipeline pipeline = Pipeline.create(options);

  TableReference badUserTable = new TableReference();
  badUserTable.setDatasetId(options.getOutputDataset());
  badUserTable.setProjectId(options.getProject());
  badUserTable.setTableId(options.getOutputTableName() + "_bad_users");

  //  1. Read game events with message id and timestamp
  //  2. Parse events
  //  3. Key by event id
  //  4. Sessionize.
  PCollection<KV<String, GameEvent>> sessionedEvents = null; /* TODO: YOUR CODE GOES HERE */

  //  1. Read play events with message id and timestamp
  //  2. Parse events
  //  3. Key by event id
  //  4. Sessionize.
  PCollection<KV<String, PlayEvent>> sessionedPlayEvents = null; /* TODO: YOUR CODE GOES HERE */

  // 1. Join events
  // 2. Compute latency using ComputeLatencyFn
  PCollection<KV<String, Long>> userLatency = null; /* TODO: YOUR CODE GOES HERE */

  // 1. Get the values of userLatencies
  // 2. Re-window into GlobalWindows with periodic repeated triggers
  // 3. Compute global approximate quantiles with fanout
  PCollectionView<List<Long>> globalQuantiles = null; /* TODO: YOUR CODE GOES HERE */

  userLatency
      // Use the computed latency distribution as a side-input to filter out likely bad users.
      .apply(
          "DetectBadUsers",
          ParDo.withSideInputs(globalQuantiles)
              .of(
                  new DoFn<KV<String, Long>, String>() {
                    public void processElement(ProcessContext c) {
                      /* TODO: YOUR CODE GOES HERE */
                      throw new RuntimeException("Not implemented");
                    }
                  }))
      // We want to only emilt a single BigQuery row for every bad user. To do this, we
      // re-key by user, then window globally and trigger on the first element for each key.
      .apply(
          "KeyByUser",
          WithKeys.of((String user) -> user).withKeyType(TypeDescriptor.of(String.class)))
      .apply(
          "GlobalWindowsTriggerOnFirst",
          Window.<KV<String, String>>into(new GlobalWindows())
              .triggering(
                  AfterProcessingTime.pastFirstElementInPane()
                      .plusDelayOf(Duration.standardSeconds(10)))
              .accumulatingFiredPanes())
      .apply("GroupByUser", GroupByKey.<String, String>create())
      .apply("FormatBadUsers", ParDo.of(new FormatBadUserFn()))
      .apply(
          "WriteBadUsers",
          BigQueryIO.Write.to(badUserTable)
              .withSchema(FormatBadUserFn.getSchema())
              .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
              .withWriteDisposition(WriteDisposition.WRITE_APPEND));

  // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
  // command line.
  PipelineResult result = pipeline.run();
}
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:73,代码来源:Exercise7.java


示例7: main

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise6Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise6Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference sessionsTable = new TableReference();
    sessionsTable.setDatasetId(options.getOutputDataset());
    sessionsTable.setProjectId(options.getProject());
    sessionsTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // Detect user sessions-- that is, a burst of activity separated by a gap from further
    // activity. Find and record the mean session lengths.
    // This information could help the game designers track the changing user engagement
    // as their set of games changes.
    userEvents
        .apply(
            Window.named("WindowIntoSessions")
                .<KV<String, Integer>>into(
                    Sessions.withGapDuration(Duration.standardMinutes(options.getSessionGap())))
                .withOutputTimeFn(OutputTimeFns.outputAtEndOfWindow()))
        // For this use, we care only about the existence of the session, not any particular
        // information aggregated over it, so the following is an efficient way to do that.
        .apply(Combine.perKey(x -> 0))
        // Get the duration per session.
        .apply("UserSessionActivity", ParDo.of(new UserSessionInfoFn()))
        // Re-window to process groups of session sums according to when the sessions complete.
        .apply(
            Window.named("WindowToExtractSessionMean")
                .<Integer>into(
                    FixedWindows.of(
                        Duration.standardMinutes(options.getUserActivityWindowDuration()))))
        // Find the mean session duration in each window.
        .apply(Mean.<Integer>globally().withoutDefaults())
        // Write this info to a BigQuery table.
        .apply(ParDo.named("FormatSessions").of(new FormatSessionWindowFn()))
        .apply(
            BigQueryIO.Write.to(sessionsTable)
                .withSchema(FormatSessionWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:60,代码来源:Exercise6.java


示例8: main

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise5Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise5Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference teamTable = new TableReference();
    teamTable.setDatasetId(options.getOutputDataset());
    teamTable.setProjectId(options.getProject());
    teamTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // Calculate the total score per user over fixed windows, and
    // cumulative updates for late data.
    final PCollectionView<Map<String, Integer>> spammersView =
        userEvents
            .apply(
                Window.named("FixedWindowsUser")
                    .<KV<String, Integer>>into(
                        FixedWindows.of(
                            Duration.standardMinutes(options.getFixedWindowDuration()))))

            // Filter out everyone but those with (SCORE_WEIGHT * avg) clickrate.
            // These might be robots/spammers.
            .apply("CalculateSpammyUsers", new CalculateSpammyUsers())
            // Derive a view from the collection of spammer users. It will be used as a side input
            // in calculating the team score sums, below.
            .apply("CreateSpammersView", View.<String, Integer>asMap());

    // Calculate the total score per team over fixed windows,
    // and emit cumulative updates for late data. Uses the side input derived above-- the set of
    // suspected robots-- to filter out scores from those users from the sum.
    // Write the results to BigQuery.
    rawEvents
        .apply(
            Window.named("WindowIntoFixedWindows")
                .<GameEvent>into(
                    FixedWindows.of(Duration.standardMinutes(options.getFixedWindowDuration()))))
        // Filter out the detected spammer users, using the side input derived above.
        .apply(
            ParDo.named("FilterOutSpammers")
                .withSideInputs(spammersView)
                .of(
                    new DoFn<GameEvent, GameEvent>() {
                      @Override
                      public void processElement(ProcessContext c) {
                        // If the user is not in the spammers Map, output the data element.
                        if (c.sideInput(spammersView).get(c.element().getUser().trim()) == null) {
                          c.output(c.element());
                        }
                      }
                    }))
        // Extract and sum teamname/score pairs from the event data.
        .apply("ExtractTeamScore", new Exercise1.ExtractAndSumScore("team"))
        // Write the result to BigQuery
        .apply(ParDo.named("FormatTeamWindows").of(new FormatTeamWindowFn()))
        .apply(
            BigQueryIO.Write.to(teamTable)
                .withSchema(FormatTeamWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:79,代码来源:Exercise5.java


示例9: main

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise5Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise5Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference teamTable = new TableReference();
    teamTable.setDatasetId(options.getOutputDataset());
    teamTable.setProjectId(options.getProject());
    teamTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // Calculate the total score per user over fixed windows, and
    // cumulative updates for late data.
    final PCollectionView<Map<String, Integer>> spammersView =
        userEvents
            .apply(
                Window.named("FixedWindowsUser")
                    .<KV<String, Integer>>into(
                        FixedWindows.of(
                            Duration.standardMinutes(options.getFixedWindowDuration()))))

            // Filter out everyone but those with (SCORE_WEIGHT * avg) clickrate.
            // These might be robots/spammers.
            .apply("CalculateSpammyUsers", new CalculateSpammyUsers())
            // Derive a view from the collection of spammer users. It will be used as a side input
            // in calculating the team score sums, below.
            .apply("CreateSpammersView", View.<String, Integer>asMap());

    // [START EXERCISE 5 PART b]:
    // Calculate the total score per team over fixed windows,
    // and emit cumulative updates for late data. Uses the side input derived above-- the set of
    // suspected robots-- to filter out scores from those users from the sum.
    // Write the results to BigQuery.
    rawEvents
        .apply(
            Window.named("WindowIntoFixedWindows")
                .<GameEvent>into(
                    FixedWindows.of(Duration.standardMinutes(options.getFixedWindowDuration()))))
        // Filter out the detected spammer users, using the side input derived above.
        //  Use ParDo with spammersView side input to filter out spammers.
        .apply(/* TODO: YOUR CODE GOES HERE */ new ChangeMe<PCollection<GameEvent>, GameEvent>())
        // Extract and sum teamname/score pairs from the event data.
        .apply("ExtractTeamScore", new Exercise1.ExtractAndSumScore("team"))
        // Write the result to BigQuery
        .apply(ParDo.named("FormatTeamWindows").of(new FormatTeamWindowFn()))
        .apply(
            BigQueryIO.Write.to(teamTable)
                .withSchema(FormatTeamWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));
    // [START EXERCISE 5 PART b]:

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:70,代码来源:Exercise5.java


示例10: main

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
public static void main(String[] args) throws IOException {
  Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
  options.setBigQuerySchema(getSchema());
  // DataflowExampleUtils creates the necessary input sources to simplify execution of this
  // Pipeline.
  DataflowExampleUtils exampleDataflowUtils = new DataflowExampleUtils(options,
    options.isUnbounded());

  Pipeline pipeline = Pipeline.create(options);

  /**
   * Concept #1: the Dataflow SDK lets us run the same pipeline with either a bounded or
   * unbounded input source.
   */
  PCollection<String> input;
  if (options.isUnbounded()) {
    LOG.info("Reading from PubSub.");
    /**
     * Concept #3: Read from the PubSub topic. A topic will be created if it wasn't
     * specified as an argument. The data elements' timestamps will come from the pubsub
     * injection.
     */
    input = pipeline
        .apply(PubsubIO.Read.topic(options.getPubsubTopic()));
  } else {
    /** Else, this is a bounded pipeline. Read from the GCS file. */
    input = pipeline
        .apply(TextIO.Read.from(options.getInputFile()))
        // Concept #2: Add an element timestamp, using an artificial time just to show windowing.
        // See AddTimestampFn for more detail on this.
        .apply(ParDo.of(new AddTimestampFn()));
  }

  /**
   * Concept #4: Window into fixed windows. The fixed window size for this example defaults to 1
   * minute (you can change this with a command-line option). See the documentation for more
   * information on how fixed windows work, and for information on the other types of windowing
   * available (e.g., sliding windows).
   */
  PCollection<String> windowedWords = input
    .apply(Window.<String>into(
      FixedWindows.of(Duration.standardMinutes(options.getWindowSize()))));

  /**
   * Concept #5: Re-use our existing CountWords transform that does not have knowledge of
   * windows over a PCollection containing windowed values.
   */
  PCollection<KV<String, Long>> wordCounts = windowedWords.apply(new WordCount.CountWords());

  /**
   * Concept #6: Format the results for a BigQuery table, then write to BigQuery.
   * The BigQuery output source supports both bounded and unbounded data.
   */
  wordCounts.apply(ParDo.of(new FormatAsTableRowFn()))
      .apply(BigQueryIO.Write.to(getTableReference(options)).withSchema(getSchema()));

  PipelineResult result = pipeline.run();

  /**
   * To mock unbounded input from PubSub, we'll now start an auxiliary 'injector' pipeline that
   * runs for a limited time, and publishes to the input PubSub topic.
   *
   * With an unbounded input source, you will need to explicitly shut down this pipeline when you
   * are done with it, so that you do not continue to be charged for the instances. You can do
   * this via a ctrl-C from the command line, or from the developer's console UI for Dataflow
   * pipelines. The PubSub topic will also be deleted at this time.
   */
  exampleDataflowUtils.mockUnboundedSource(options.getInputFile(), result);
}
 
开发者ID:sinmetal,项目名称:iron-hippo,代码行数:70,代码来源:WindowedWordCount.java


示例11: mockUnboundedSource

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
/**
 * Start the auxiliary injector pipeline, then wait for this pipeline to finish.
 */
public void mockUnboundedSource(String inputFile, PipelineResult result) {
  startInjectorIfNeeded(inputFile);
  waitToFinish(result);
}
 
开发者ID:sinmetal,项目名称:iron-hippo,代码行数:8,代码来源:DataflowExampleUtils.java


示例12: PipelineRunnerType

import com.google.cloud.dataflow.sdk.PipelineResult; //导入依赖的package包/类
PipelineRunnerType(Class<? extends PipelineRunner<? extends PipelineResult>> runner, String doc){
    this.runner = runner;
    this.doc = doc;
}
 
开发者ID:broadinstitute,项目名称:gatk-dataflow,代码行数:5,代码来源:DataflowCommandLineProgram.java



注:本文中的com.google.cloud.dataflow.sdk.PipelineResult类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java DataEncryptionManager类代码示例发布时间:2022-05-22
下一篇:
Java ConfigurationFromContext类代码示例发布时间:2022-05-22
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap