• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Java GoalType类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Java中org.apache.commons.math3.optimization.GoalType的典型用法代码示例。如果您正苦于以下问题:Java GoalType类的具体用法?Java GoalType怎么用?Java GoalType使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



GoalType类属于org.apache.commons.math3.optimization包,在下文中一共展示了GoalType类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Java代码示例。

示例1: sortPairs

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/**
 * Sort the optima from best to worst, followed by {@code null} elements.
 *
 * @param goal Goal type.
 */
private void sortPairs(final GoalType goal) {
    Arrays.sort(optima, new Comparator<UnivariatePointValuePair>() {
            /** {@inheritDoc} */
            public int compare(final UnivariatePointValuePair o1,
                               final UnivariatePointValuePair o2) {
                if (o1 == null) {
                    return (o2 == null) ? 0 : 1;
                } else if (o2 == null) {
                    return -1;
                }
                final double v1 = o1.getValue();
                final double v2 = o2.getValue();
                return (goal == GoalType.MINIMIZE) ?
                    Double.compare(v1, v2) : Double.compare(v2, v1);
            }
        });
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:23,代码来源:UnivariateMultiStartOptimizer.java


示例2: optimize

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/** {@inheritDoc} */
public UnivariatePointValuePair optimize(int maxEval, UnivariateFunction f,
                                         GoalType goalType,
                                         double min, double max,
                                         double startValue) {
    // Checks.
    if (f == null) {
        throw new NullArgumentException();
    }
    if (goalType == null) {
        throw new NullArgumentException();
    }

    // Reset.
    searchMin = min;
    searchMax = max;
    searchStart = startValue;
    goal = goalType;
    function = f;
    evaluations.setMaximalCount(maxEval);
    evaluations.resetCount();

    // Perform computation.
    return doOptimize();
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:26,代码来源:BaseAbstractUnivariateOptimizer.java


示例3: optimizeInternal

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/**
 * Optimize an objective function.
 *
 * @param maxEval Allowed number of evaluations of the objective function.
 * @param f Objective function.
 * @param goalType Optimization type.
 * @param optData Optimization data. The following data will be looked for:
 * <ul>
 *  <li>{@link InitialGuess}</li>
 *  <li>{@link SimpleBounds}</li>
 * </ul>
 * @return the point/value pair giving the optimal value of the objective
 * function.
 * @throws TooManyEvaluationsException if the maximal number of
 * evaluations is exceeded.
 * @since 3.1
 */
protected PointValuePair optimizeInternal(int maxEval,
                                          FUNC f,
                                          GoalType goalType,
                                          OptimizationData... optData)
    throws TooManyEvaluationsException {
    // Set internal state.
    evaluations.setMaximalCount(maxEval);
    evaluations.resetCount();
    function = f;
    goal = goalType;
    // Retrieve other settings.
    parseOptimizationData(optData);
    // Check input consistency.
    checkParameters();
    // Perform computation.
    return doOptimize();
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:35,代码来源:BaseAbstractMultivariateOptimizer.java


示例4: doOptimize

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/** {@inheritDoc} */
@Override
protected PointValuePair doOptimize() {
    final double[] lowerBound = getLowerBound();
    final double[] upperBound = getUpperBound();

    // Validity checks.
    setup(lowerBound, upperBound);

    isMinimize = (getGoalType() == GoalType.MINIMIZE);
    currentBest = new ArrayRealVector(getStartPoint());

    final double value = bobyqa(lowerBound, upperBound);

    return new PointValuePair(currentBest.getDataRef(),
                                  isMinimize ? value : -value);
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:18,代码来源:BOBYQAOptimizer.java


示例5: search

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/**
 * Find the minimum of the function {@code f(p + alpha * d)}.
 *
 * @param p Starting point.
 * @param d Search direction.
 * @return the optimum.
 * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
 * if the number of evaluations is exceeded.
 */
public UnivariatePointValuePair search(final double[] p, final double[] d) {
    final int n = p.length;
    final UnivariateFunction f = new UnivariateFunction() {
            /** {@inheritDoc} */
            public double value(double alpha) {
                final double[] x = new double[n];
                for (int i = 0; i < n; i++) {
                    x[i] = p[i] + alpha * d[i];
                }
                final double obj = PowellOptimizer.this.computeObjectiveValue(x);
                return obj;
            }
        };

    final GoalType goal = PowellOptimizer.this.getGoalType();
    bracket.search(f, goal, 0, 1);
    // Passing "MAX_VALUE" as a dummy value because it is the enclosing
    // class that counts the number of evaluations (and will eventually
    // generate the exception).
    return optimize(Integer.MAX_VALUE, f, goal,
                    bracket.getLo(), bracket.getHi(), bracket.getMid());
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:32,代码来源:PowellOptimizer.java


示例6: optimize

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/** {@inheritDoc} */
public PointValuePair optimize(final LinearObjectiveFunction f,
                               final Collection<LinearConstraint> constraints,
                               final GoalType goalType, final boolean restrictToNonNegative)
    throws MathIllegalStateException {

    // store linear problem characteristics
    this.function          = f;
    this.linearConstraints = constraints;
    this.goal              = goalType;
    this.nonNegative       = restrictToNonNegative;

    iterations  = 0;

    // solve the problem
    return doOptimize();

}
 
开发者ID:biocompibens,项目名称:SME,代码行数:19,代码来源:AbstractLinearOptimizer.java


示例7: SimplexTableau

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/**
 * Build a tableau for a linear problem.
 * @param f linear objective function
 * @param constraints linear constraints
 * @param goalType type of optimization goal: either {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}
 * @param restrictToNonNegative whether to restrict the variables to non-negative values
 * @param epsilon amount of error to accept when checking for optimality
 * @param maxUlps amount of error to accept in floating point comparisons
 */
SimplexTableau(final LinearObjectiveFunction f,
               final Collection<LinearConstraint> constraints,
               final GoalType goalType, final boolean restrictToNonNegative,
               final double epsilon,
               final int maxUlps) {
    this.f                      = f;
    this.constraints            = normalizeConstraints(constraints);
    this.restrictToNonNegative  = restrictToNonNegative;
    this.epsilon                = epsilon;
    this.maxUlps                = maxUlps;
    this.numDecisionVariables   = f.getCoefficients().getDimension() +
                                  (restrictToNonNegative ? 0 : 1);
    this.numSlackVariables      = getConstraintTypeCounts(Relationship.LEQ) +
                                  getConstraintTypeCounts(Relationship.GEQ);
    this.numArtificialVariables = getConstraintTypeCounts(Relationship.EQ) +
                                  getConstraintTypeCounts(Relationship.GEQ);
    this.tableau = createTableau(goalType == GoalType.MAXIMIZE);
    initializeColumnLabels();
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:29,代码来源:SimplexTableau.java


示例8: testStartSimplexInsideRange

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testStartSimplexInsideRange() {

    final BiQuadratic biQuadratic = new BiQuadratic(2.0, 2.5, 1.0, 3.0, 2.0, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped =
            new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                       biQuadratic.getLower(),
                                                       biQuadratic.getUpper(),
                                                       1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30);
    optimizer.setSimplex(new NelderMeadSimplex(new double[] { 1.0, 0.5 }));

    final PointValuePair optimum
        = optimizer.optimize(300, wrapped, GoalType.MINIMIZE, new double[] { 1.5, 2.25 });

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);

}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:21,代码来源:MultivariateFunctionPenaltyAdapterTest.java


示例9: doTest

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/**
 * @param func Function to optimize.
 * @param startPoint Starting point.
 * @param boundaries Upper / lower point limit.
 * @param goal Minimization or maximization.
 * @param fTol Tolerance relative error on the objective function.
 * @param pointTol Tolerance for checking that the optimum is correct.
 * @param maxEvaluations Maximum number of evaluations.
 * @param expected Expected point / value.
 */
private void doTest(MultivariateFunction func,
                    double[] startPoint,
                    double[][] boundaries,
                    GoalType goal,
                    double fTol,
                    double pointTol,
                    int maxEvaluations,
                    PointValuePair expected) {
    doTest(func,
           startPoint,
           boundaries,
           goal,
           fTol,
           pointTol,
           maxEvaluations,
           0,
           expected,
           "");
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:30,代码来源:BOBYQAOptimizerTest.java


示例10: testHalfBounded

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testHalfBounded() {

    final BiQuadratic biQuadratic = new BiQuadratic(4.0, 4.0,
                                                    1.0, Double.POSITIVE_INFINITY,
                                                    Double.NEGATIVE_INFINITY, 3.0);
    final MultivariateFunctionPenaltyAdapter wrapped =
            new MultivariateFunctionPenaltyAdapter(biQuadratic,
                                                       biQuadratic.getLower(),
                                                       biQuadratic.getUpper(),
                                                       1000.0, new double[] { 100.0, 100.0 });

    SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-10, 1.0e-20));
    optimizer.setSimplex(new NelderMeadSimplex(new double[] { 1.0, 0.5 }));

    final PointValuePair optimum
        = optimizer.optimize(400, wrapped, GoalType.MINIMIZE, new double[] { -1.5, 4.0 });

    Assert.assertEquals(biQuadratic.getBoundedXOptimum(), optimum.getPoint()[0], 2e-7);
    Assert.assertEquals(biQuadratic.getBoundedYOptimum(), optimum.getPoint()[1], 2e-7);

}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:23,代码来源:MultivariateFunctionPenaltyAdapterTest.java


示例11: sortPairs

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/**
 * Sort the optima from best to worst, followed by {@code null} elements.
 *
 * @param goal Goal type.
 */
private void sortPairs(final GoalType goal) {
    Arrays.sort(optima, new Comparator<UnivariatePointValuePair>() {
            public int compare(final UnivariatePointValuePair o1,
                               final UnivariatePointValuePair o2) {
                if (o1 == null) {
                    return (o2 == null) ? 0 : 1;
                } else if (o2 == null) {
                    return -1;
                }
                final double v1 = o1.getValue();
                final double v2 = o2.getValue();
                return (goal == GoalType.MINIMIZE) ?
                    Double.compare(v1, v2) : Double.compare(v2, v1);
            }
        });
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:22,代码来源:UnivariateMultiStartOptimizer.java


示例12: testLeastSquares1

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testLeastSquares1() {

    final RealMatrix factors =
        new Array2DRowRealMatrix(new double[][] {
                { 1, 0 },
                { 0, 1 }
            }, false);
    LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorFunction() {
            public double[] value(double[] variables) {
                return factors.operate(variables);
            }
        }, new double[] { 2.0, -3.0 });
    SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-6);
    optimizer.setSimplex(new NelderMeadSimplex(2));
    PointValuePair optimum =
        optimizer.optimize(200, ls, GoalType.MINIMIZE, new double[] { 10, 10 });
    Assert.assertEquals( 2, optimum.getPointRef()[0], 3e-5);
    Assert.assertEquals(-3, optimum.getPointRef()[1], 4e-4);
    Assert.assertTrue(optimizer.getEvaluations() > 60);
    Assert.assertTrue(optimizer.getEvaluations() < 80);
    Assert.assertTrue(optimum.getValue() < 1.0e-6);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:24,代码来源:SimplexOptimizerNelderMeadTest.java


示例13: testRestrictVariablesToNonNegative

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testRestrictVariablesToNonNegative() {
    LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] { 409, 523, 70, 204, 339 }, 0);
    Collection<LinearConstraint> constraints = new ArrayList<LinearConstraint>();
    constraints.add(new LinearConstraint(new double[] {    43,   56, 345,  56,    5 }, Relationship.LEQ,  4567456));
    constraints.add(new LinearConstraint(new double[] {    12,   45,   7,  56,   23 }, Relationship.LEQ,    56454));
    constraints.add(new LinearConstraint(new double[] {     8,  768,   0,  34, 7456 }, Relationship.LEQ,  1923421));
    constraints.add(new LinearConstraint(new double[] { 12342, 2342,  34, 678, 2342 }, Relationship.GEQ,     4356));
    constraints.add(new LinearConstraint(new double[] {    45,  678,  76,  52,   23 }, Relationship.EQ,    456356));

    SimplexSolver solver = new SimplexSolver();
    PointValuePair solution = solver.optimize(f, constraints, GoalType.MAXIMIZE, true);
    Assert.assertEquals(2902.92783505155, solution.getPoint()[0], .0000001);
    Assert.assertEquals(480.419243986254, solution.getPoint()[1], .0000001);
    Assert.assertEquals(0.0, solution.getPoint()[2], .0000001);
    Assert.assertEquals(0.0, solution.getPoint()[3], .0000001);
    Assert.assertEquals(0.0, solution.getPoint()[4], .0000001);
    Assert.assertEquals(1438556.7491409, solution.getValue(), .0000001);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:20,代码来源:SimplexSolverTest.java


示例14: search

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
/**
 * Find the minimum of the function {@code f(p + alpha * d)}.
 *
 * @param p Starting point.
 * @param d Search direction.
 * @return the optimum.
 * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
 * if the number of evaluations is exceeded.
 */
public UnivariatePointValuePair search(final double[] p, final double[] d) {
    final int n = p.length;
    final UnivariateFunction f = new UnivariateFunction() {
            public double value(double alpha) {
                final double[] x = new double[n];
                for (int i = 0; i < n; i++) {
                    x[i] = p[i] + alpha * d[i];
                }
                final double obj = PowellOptimizer.this.computeObjectiveValue(x);
                return obj;
            }
        };

    final GoalType goal = PowellOptimizer.this.getGoalType();
    bracket.search(f, goal, 0, 1);
    // Passing "MAX_VALUE" as a dummy value because it is the enclosing
    // class that counts the number of evaluations (and will eventually
    // generate the exception).
    return optimize(Integer.MAX_VALUE, f, goal,
                    bracket.getLo(), bracket.getHi(), bracket.getMid());
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:31,代码来源:PowellOptimizer.java


示例15: testTableauWithNoArtificialVars

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testTableauWithNoArtificialVars() {
    LinearObjectiveFunction f = new LinearObjectiveFunction(new double[] {15, 10}, 0);
    Collection<LinearConstraint> constraints = new ArrayList<LinearConstraint>();
    constraints.add(new LinearConstraint(new double[] {1, 0}, Relationship.LEQ, 2));
    constraints.add(new LinearConstraint(new double[] {0, 1}, Relationship.LEQ, 3));
    constraints.add(new LinearConstraint(new double[] {1, 1}, Relationship.LEQ, 4));
    SimplexTableau tableau =
        new SimplexTableau(f, constraints, GoalType.MAXIMIZE, false, 1.0e-6);
    double[][] initialTableau = {
                                 {1, -15, -10, 25, 0, 0, 0, 0},
                                 {0,   1,   0, -1, 1, 0, 0, 2},
                                 {0,   0,   1, -1, 0, 1, 0, 3},
                                 {0,   1,   1, -2, 0, 0, 1, 4}
    };
    assertMatrixEquals(initialTableau, tableau.getData());
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:18,代码来源:SimplexTableauTest.java


示例16: testColumnsPermutation

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testColumnsPermutation() {
    LinearProblem problem =
        new LinearProblem(new double[][] { { 1.0, -1.0 }, { 0.0, 2.0 }, { 1.0, -2.0 } },
                          new double[] { 4.0, 6.0, 1.0 });

    NonLinearConjugateGradientOptimizer optimizer =
        new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                new SimpleValueChecker(1e-6, 1e-6));
    PointValuePair optimum =
        optimizer.optimize(100, problem, GoalType.MINIMIZE, new double[] { 0, 0 });
    Assert.assertEquals(7.0, optimum.getPoint()[0], 1.0e-10);
    Assert.assertEquals(3.0, optimum.getPoint()[1], 1.0e-10);
    Assert.assertEquals(0.0, optimum.getValue(), 1.0e-10);

}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:17,代码来源:NonLinearConjugateGradientOptimizerTest.java


示例17: testNoDependency

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testNoDependency() {
    LinearProblem problem = new LinearProblem(new double[][] {
            { 2, 0, 0, 0, 0, 0 },
            { 0, 2, 0, 0, 0, 0 },
            { 0, 0, 2, 0, 0, 0 },
            { 0, 0, 0, 2, 0, 0 },
            { 0, 0, 0, 0, 2, 0 },
            { 0, 0, 0, 0, 0, 2 }
    }, new double[] { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 });
    NonLinearConjugateGradientOptimizer optimizer =
        new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                new SimpleValueChecker(1e-6, 1e-6));
    PointValuePair optimum =
        optimizer.optimize(100, problem, GoalType.MINIMIZE, new double[] { 0, 0, 0, 0, 0, 0 });
    for (int i = 0; i < problem.target.length; ++i) {
        Assert.assertEquals(0.55 * i, optimum.getPoint()[i], 1.0e-10);
    }
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:20,代码来源:NonLinearConjugateGradientOptimizerTest.java


示例18: testOneSet

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testOneSet() {
    LinearProblem problem = new LinearProblem(new double[][] {
            {  1,  0, 0 },
            { -1,  1, 0 },
            {  0, -1, 1 }
    }, new double[] { 1, 1, 1});
    NonLinearConjugateGradientOptimizer optimizer =
        new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                new SimpleValueChecker(1e-6, 1e-6));
    PointValuePair optimum =
        optimizer.optimize(100, problem, GoalType.MINIMIZE, new double[] { 0, 0, 0 });
    Assert.assertEquals(1.0, optimum.getPoint()[0], 1.0e-10);
    Assert.assertEquals(2.0, optimum.getPoint()[1], 1.0e-10);
    Assert.assertEquals(3.0, optimum.getPoint()[2], 1.0e-10);

}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:18,代码来源:NonLinearConjugateGradientOptimizerTest.java


示例19: testMoreEstimatedParametersUnsorted

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testMoreEstimatedParametersUnsorted() {
    LinearProblem problem = new LinearProblem(new double[][] {
             { 1.0, 1.0,  0.0,  0.0, 0.0,  0.0 },
             { 0.0, 0.0,  1.0,  1.0, 1.0,  0.0 },
             { 0.0, 0.0,  0.0,  0.0, 1.0, -1.0 },
             { 0.0, 0.0, -1.0,  1.0, 0.0,  1.0 },
             { 0.0, 0.0,  0.0, -1.0, 1.0,  0.0 }
    }, new double[] { 3.0, 12.0, -1.0, 7.0, 1.0 });
    NonLinearConjugateGradientOptimizer optimizer =
        new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                new SimpleValueChecker(1e-6, 1e-6));
    PointValuePair optimum =
        optimizer.optimize(100, problem, GoalType.MINIMIZE, new double[] { 2, 2, 2, 2, 2, 2 });
    Assert.assertEquals(0, optimum.getValue(), 1.0e-10);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:17,代码来源:NonLinearConjugateGradientOptimizerTest.java


示例20: testInconsistentEquations

import org.apache.commons.math3.optimization.GoalType; //导入依赖的package包/类
@Test
public void testInconsistentEquations() {
    LinearProblem problem = new LinearProblem(new double[][] {
            { 1.0,  1.0 },
            { 1.0, -1.0 },
            { 1.0,  3.0 }
    }, new double[] { 3.0, 1.0, 4.0 });

    NonLinearConjugateGradientOptimizer optimizer =
        new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                new SimpleValueChecker(1e-6, 1e-6));
    PointValuePair optimum =
        optimizer.optimize(100, problem, GoalType.MINIMIZE, new double[] { 1, 1 });
    Assert.assertTrue(optimum.getValue() > 0.1);

}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:17,代码来源:NonLinearConjugateGradientOptimizerTest.java



注:本文中的org.apache.commons.math3.optimization.GoalType类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Java UISelectItem类代码示例发布时间:2022-05-22
下一篇:
Java Error类代码示例发布时间:2022-05-22
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap